LeetCode -- Unique Paths II

本文介绍了一种解决带障碍网格中寻找从左上角到右下角唯一路径数量的动态规划算法。通过分析不同场景下的边界条件及状态转移方程,实现了高效计算路径数目的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目要求:


Follow up for "Unique Paths":


Now consider if some obstacles are added to the grids. How many unique paths would there be?


An obstacle and empty space is marked as 1 and 0 respectively in the grid.


For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.


[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]
The total number of unique paths is 2.


Note: m and n will be at most 100.


就是在一个矩阵中,求从左上到右下单元的路径个数,每次只能向下或向右移动。0表示可以通过,1表示障碍。


思路:
本题依然是1个DP问题。设dp[i,j]表示从左上到矩阵的[i,j]位置的路径个数。


1. 当行或列只有1时,如果有障碍,则返回0,否则返回1。


当row > 1 且 col > 1:
2.1 分别初始化dp的第一行(i)和第一列(j),即dp[i,0]和dp[0,j]:如果发现障碍,即i==1或j==1,把则dp[i...n,0]和dp[0,j...n]设为0,没有发现障碍时初始化为1。
2.2 如果obstacleGrid[i,j]为1,即当前为障碍,则dp[i,j]为0,否则:
dp[i, j] = dp[i-1, j] + dp[i, j-1];




实现代码:




public class Solution {
    public int UniquePathsWithObstacles(int[,] obstacleGrid) {
        var row = obstacleGrid.GetLength(0);
    	var col = obstacleGrid.GetLength(1);
    	
    	if(row < 1 || obstacleGrid[0,0] == 1){
    		return 0;
    	}
    	
    	if(row == 1){
    		for(var i = 0; i < col; i ++){
    			if(obstacleGrid[0,i] == 1){
    				return 0;
    			}
    		}
    		return 1;
    	}
    	if(col == 1){
    		for(var i = 0; i < row; i ++){
    			if(obstacleGrid[i,0] == 1){
    				return 0;
    			}
    		}
    		return 1;
    	}
    	
    	var dp = new int[row, col];
    	
    	for(var i = 0;i < col; i++){
    		if(obstacleGrid[0,i] == 1){
    			while(i < col){
    				dp[0,i] = 0;
    				i++;
    			}
    			break;
    		}
    		else{
    			dp[0,i] = 1;
    		}
    	}
    	
    	for(var i = 0;i < row; i++){
    		if(obstacleGrid[i,0] == 1){
    			while(i < row){
    				dp[i,0] = 0;
    				i++;
    			}
    			break;
    		}
    		else{
    			dp[i,0] = 1;
    		}
    	}
    	
    	for(var i = 1;i < row; i++){
    		for(var j = 1;j < col; j++){
    			if(obstacleGrid[i,j] == 1){
    				dp[i,j] = 0;
    			}
    			else{
    				dp[i, j] = dp[i-1, j] + dp[i, j-1];
    			}
    		}
    	}
    	
    	return dp[row-1, col-1];
    }
}


### LeetCode 刷题推荐列表与学习路径 在 LeetCode 上进行刷题时,制定一个合理的计划非常重要。以下是一个基于算法分类的学习路径和推荐题目列表[^1]: #### 学习路径 1. **基础算法理论** 在开始刷题之前,建议先通过视频或书籍了解基本的算法理论。例如,分治法、贪心算法、动态规划、二叉搜索树(BST)、图等概念[^1]。 2. **数据结构基础** 熟悉常见的数据结构,包括数组、链表、栈、队列、哈希表、树、图等。确保对这些数据结构的操作有深刻理解。 3. **分模块刷题** 按照以下顺序逐步深入: - 树:从简单的遍历问题(如前序、中序、后序遍历)开始,逐渐过渡到复杂问题(如二叉搜索树验证、平衡二叉树等)。 - 图与回溯算法:学习图的表示方法(邻接矩阵、邻接表),并练习深度优先搜索(DFS)和广度优先搜索(BFS)。结合回溯算法解决组合问题、排列问题等。 - 贪心算法:选择一些经典的贪心问题(如活动选择问题、区间覆盖问题)进行练习。 - 动态规划:从简单的 DP 问题(如爬楼梯、斐波那契数列)入手,逐步掌握状态转移方程的设计技巧。 4. **刷题策略** 刷题时优先选择简单或中等难度的题目,并关注通过率较高的题目。这有助于建立信心并巩固基础知识[^1]。 #### 推荐题目列表 以下是按算法分类的 LeetCode 题目推荐列表: 1. **树** - [104. 二叉树的最大深度](https://leetcode-cn.com/problems/maximum-depth-of-binary-tree/) - [94. 二叉树的中序遍历](https://leetcode-cn.com/problems/binary-tree-inorder-traversal/) - [236. 二叉树的最近公共祖先](https://leetcode-cn.com/problems/lowest-common-ancestor-of-a-binary-search-tree/) 2. **图与回溯** - [79. 单词搜索](https://leetcode-cn.com/problems/word-search/) - [51. N皇后](https://leetcode-cn.com/problems/n-queens/) - [78. 子集](https://leetcode-cn.com/problems/subsets/) 3. **贪心** - [455. 分发饼干](https://leetcode-cn.com/problems/assign-cookies/) - [135. 分发糖果](https://leetcode-cn.com/problems/candy/) - [406. 根据身高重建队列](https://leetcode-cn.com/problems/queue-reconstruction-by-height/) 4. **动态规划** - [70. 爬楼梯](https://leetcode-cn.com/problems/climbing-stairs/) - [53. 最大子数组和](https://leetcode-cn.com/problems/maximum-subarray/) - [300. 最长递增子序列](https://leetcode-cn.com/problems/longest-increasing-subsequence/) #### 示例代码 以下是一个简单的动态规划问题示例——“不同路径”[^3]: ```python def uniquePaths(m, n): dp = [[1] * n for _ in range(m)] for i in range(1, m): for j in range(1, n): dp[i][j] = dp[i-1][j] + dp[i][j-1] return dp[-1][-1] # 测试用例 print(uniquePaths(3, 2)) # 输出:3 ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值