Flume 数据采集系统 性能优化和关键问题汇总

原创 2016年06月01日 20:02:56

flume 性能优化

flume的整体基础架构包括三个,分别是source,chanel, sink. 下面是官网的截图:



因此,优化要从三个组件的角度去分别优化。

1、source  

sources是flume日志采集的起点,监控日志文件系统目录。其中最常用的是 Spooling Directory Source , Exec Source 和 Avro Source 。

关键参数讲解:

(1)batchSize: 这个参数当你采用的是 Exec Source 时,含义是一次读入channel的数据的行数,当你采用Spooling Directory Source含义是 Granularity(粒度) at which to batch transfer to the channel ,据我分析应该是events(flume最小处理数据单元)的数量。

这个参数一般 会设置比较大,一般的数值跟每秒要处理的数值相当。

(2)inputCharset 这个很重要,就是文本文件的编码,默认是flume按照utf-8处理,如果文本数据是gbk,则要增加此参数,

(3)interceptors flume自带的拦截器,可以根据正则表达式去过滤数据,但是据我实际经验总结,这个配置很影响入库性能,因此这部分工作我基本都在sink代码里面做。



2、channel 

channel 是flume的中间数据缓存管道,有点类似kafka的机制,因此个组件的性能很重要。

我在项目中主要采用的是menmory channel,原因是数据量大,要求极大的数据吞吐量和速度,但是有一点不好的是

如果一旦flume进程down掉,是没有“续点传输”的机制的,filechannel 和它正好相反。 


关键参数讲解:

 (1)   capacity  :   存储在channel中的events的最大数量

 (2)   transactionCapacity : 每次数据由channel到sink传输的最大events的数量

 (3)   byteCapacity  :该channel的内存大小,单位是 byte 。

 



其中transactionCapacity关键中最容易忽略的,因为每个sink的终端不一样,批处理的数量要严格限制。还有一点,events的数量值和channel大小不是一回事,一个event包括单位数据的内容+头数据+数据传输状态。可以说 (events的数量值*单位数据所占字节数)* 0.9 = 所占空间内存数值(就是想说明transactionCapacity 的大小和byteCapacity  不能简答的数值比较 )。


3、sink  

sink组件的核心工作是把channel中数据进行输出到特定的终端,比如hdfs,hbase,database,avro等等。

因此这块的核心优化工作在 优化各个终端(hdfs,hbase,database,avro)的数据插入性能。在这里面我只优化过hbase的数据插入性能(具体的做法就是打开flume hbasesink源码,修改然后打包),当然这块的工作不在flume本身,这也不是flume所能控制的。




4、整体架构


    这三个组件当然顺序不能颠倒,但是每个组件的数量你可以自定义规定。 一个flume agent 就好比一个进程,一个source就好比进程里面的一个大组件,但是这里面注意的是每个sink 你又可以定义多个子线程,就是说一个flume agent进程可以多个sink,每个sink又可以多个线程(具体参数是 threadsPoolSize)。


5、 JAVA内存的设计  

主要通过修改 conf/flume-env.sh文件实现
主要设计Xmx和Xms两个参数,可以根据OS内存的大小进行合理设置,  一般以每秒处理5000行Apache日志的速度,需要配置 5-10个G 。
-Xms<size>        set initial Java heap size.........................
-Xmx<size>        set maximum Java heap size.........................


6 、 主要问题

这里面最恶心的问题是 三个组件互相传递数据速度不一致,这是要严格限制和摒除的,这也是flume的小难点之一吧。如果不一致,会严重影响采集整个系统的稳定性。当然这块我也在逐渐摸索,其他优化方面待续  ........................................








版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

flume性能调优总结

fllume经常被用在生产环境中收集后端产生的日志。一个flume进程就是一个Agent。要充分发挥flume的性能最主要的是要调好flume的配置参数。 flume agent配置分为三部分:Sou...

使用Ganglia监控Flume的性能指标数据

一、原理 根据“《Monitoring with Ganglia》Chapter 2 Installing and Configuring Ganglia”,Ganglia中收集性能指标数据的是Gmo...
  • DSLZTX
  • DSLZTX
  • 2015-09-28 10:37
  • 3678

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

FLume:通过端口监控flume的运行程序

flume启动 flume-ng agent -n agent1 -c conf -f /home/flume-1.6.0/conf/flume-zhuis-conf.properties -...

[干货] Flume综述与实例

Flume是一个分布式的、可靠的数据收集、集合和移动的组件。基于流式数据模型,非常健壮、支持容错、故障转移等特性。本用实例辅助说明Flume的大部分核心概念。 安装FLumeFlume的安装非常简单,...

2014年终研发工程师工作总结【转】

总想写点什么,这东西其实在给人力的excel有,但是为啥还要写呢。一是感觉那个版本写的总有点束缚;二是作为一个年末的工作总结,这里不只是技术,更多的 工作的环节问题,不管对不对,都是自己的感悟。 工作...

flume-ng性能优化与架构设计

如图1所示,一个flume-ng agent主要包括source,channel和sink三部分,三部分运行在java JVM中,JVM一般运行在linux'操作系统上,因此,这些因素都可能影响最终的...

Flume-ng 1.6.0安装、配置与使用

1. 介绍 Flume NG是Cloudera提供的一个分布式、可靠、可用的系统,它能够将不同数据源的海量日志数据进行高效收集、聚合、移动,最后存储到一个中心化数据存储系统中。由原来的Flume...

记flume部署过程中遇到的问题以及解决方法

项目需求是将线上服务器生成的日志信息实时导入kafka,采用agent和collector分层传输,app的数据通过thrift传给agent,agent通过avro sink将数据发给collect...

Flume监控及参数调优

flume监控在flume传输数据的过程中,打开监控,查看CPU、内存等的变化情况也挺有意思的,见JConsole&VisualVM监控总结 。另外,当报的错莫名奇妙时,可以尝试调整参数,监控不同效果...

实战Apache-Flume采集DB数据到kafka

Flume是一个优秀的数据采集组件,有些重量级,其本质也是根据SQL语句的查询结果组装成opencsv格式的数据,默认的分隔符号是逗号(,),可以重写opencsv某些类进行修改   1、...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)