BZOJ1002

传送门:BZOJ1002

似乎做法挺多,不过我并不懂得基于连通性的动态规划,于是只能做纯数学解法。

我们需要以下知识:

Kirchhoff Matrix Tree定理:
G 为无向图,取E为图 G 的度数矩阵,F为图 G 的邻接矩阵
称矩阵EF为图G的Kirchhoff矩阵 R ,任取与R同构的行列式 R 的任意一个 n1 阶主子式 Q ,其值为图G的生成树个数。

这个定理不是显然的,但我们在这里不证,因为它与本题的讨论无关。

取中心点为0号点,其余点按顺时针顺序标为1234…n,则有

R=n111111310011131001030100111013n+1

这里我们显然会取1-n行主子式,故

Q=310001131000030000011100013n

将此行列式Laplace展开,可得

Q(n)=3×G(n1)2×G(n2)2

其中 Q(n)Qn G(n) 指形如

310000131000030000011000013n

的带状行列式的值。这个式子的证明详细步骤就不写了。

而将 G Laplace展开可以发现有

G(n)=3×G(n1)G(n2)

详细过程就不写了。

于是有

ans=3×G(n1)2×G(n2)2

其中
G(n)=383×G(n1)G(n2)n=1n=2otherwise

然后高精度就可以AC了。

【吐槽:题解LaTeX代码写的时间比我做题时间还长】

代码上的小细节见下。

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;

struct node
{
    int a[1100],l;
    node()
    {
        memset(a,0,sizeof(a));
        l = 1;
    }
    friend inline node operator *(int x,node &y)
    {
        node ret; ret.l = y.l+1;
        for (int i = 1;i <= y.l;++i)
        {
            ret.a[i] += y.a[i]*x;
            ret.a[i+1] += ret.a[i]/10;
            ret.a[i] %= 10;
        }
        if (ret.a[ret.l] == 0) ret.l--;
        return ret;
    }
    friend inline node operator -(node x,node y)
    {
        node z; z.l = max(x.l,y.l);
        for (int i = 1;i <= z.l;++i)
        {
            z.a[i] = x.a[i]-y.a[i];
            while (z.a[i] < 0)
                z.a[i] += 10,x.a[i+1]--;
        }
        while (z.l > 1&&z.a[z.l] == 0)z.l--;
        return z;
    }
    friend inline node operator +(node &x,int y)
    {
        node ret = x;
        ret.a[1] += y;
        for (int i = 1;i <= ret.l;++i)
        {
            if (ret.a[i] >= 10)
                ret.a[i]-=10,ret.a[i+1]++;
            else break;
        }
        if (ret.a[ret.l+1]) ret.l++;
        return ret;
    }
    inline void print()
    {
        for (int i = l;i >= 1;--i)
            printf("%d",this->a[i]);
    }
};

int n;
node g[110];
node ans;

void Readdata()
{
    freopen("loli.in","r",stdin);
    scanf("%d",&n);
}

void Solve()
{
    g[1]=g[1]+3;
    g[2]=g[2]+8;
    if(n<=2){
        g[n].print();
        return;
    }
    for(int i=3;i<=n;i++)
        g[i]=3*g[i-1]-g[i-2];
    ans=3*g[n-1]-2*g[n-2];
    ans=ans+(-2);
    ans.print();
}

void Close()
{
    fclose(stdin);
    fclose(stdout);
}

int main()

{
    Readdata();
    Solve();
    Close();
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值