自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

I good vegetable a!

本人维护了一个数字图像各种论文复现工程,欢迎STAR: https://github.com/BBuf/

  • 博客(1596)
  • 资源 (2)
  • 论坛 (1)
  • 收藏
  • 关注

原创 维护了一个微信公众号,分享论文,算法,比赛,生活,欢迎加入。

公众号名称: GiantPandaCV按照惯例,二维码:欢迎加入和我讨论深度学习,机器学习,ACM,Leetcode,工作生活等等。

2019-10-29 17:53:02 393

原创 CVPR && ICCV 2019 论文阅读

《Bounding Box Regression with Uncertainty for Accurate Object Detection》CVPR 2019:《精确目标检测的不确定边界框回归》论文解读地址:https://www.sohu.com/a/341292298_651893?spm=smpc.author.fd-d.16.1569831940423eL7mzGA《ACE: A...

2019-09-30 16:28:57 886

原创 Leetcode 周赛记录

Leetcode第150场周赛时间:2019/8/18竞赛地址: https://leetcode-cn.com/contest/weekly-contest-150解决题目:4/4耗时: 1:05:04排名: 50+第一题,直接模拟。第二题,DFS遍历树,开一个数组,记录每一层的和。第三题,直接遍历,然后DFS计算和当前点满足条件的最小距离。第四题,观察一下肯定目标串是从出现过字符...

2019-08-18 12:00:00 718

原创 OpenCV图像处理专栏一 | 盘点常见颜色空间互转

RGB2GRAY算法\quad首先是RGB2GRAY,也就是彩色图转灰度图的算法。RGB值和灰度的转换,实际上是人眼对于彩色的感觉到亮度感觉的转换,这是一个心理学问题,有一个公式:Grey = 0.299×\times×R + 0.587×\times×G + 0.114×\times×B。直接计算复杂度较高,考虑优化可以将小数转为整数,除法变为移位,乘法也变为移位,但是这种方法也会带来一定的...

2019-02-12 17:52:11 1043 3

原创 深度学习框架OneFlow是如何和ONNX交互的?

0x0. 介绍在开始阅读本篇文章之前,如果你对ONNX不是很了解介意先阅读我之前写的这几篇介绍ONNX文章:ONNX初探ONNX 再探onnx2pytorch和onnx-simplifier新版介绍以及大缺弦老师的:onnx simplifier 和 optimizer然后,这篇文章不会继续探索ONNX,而是展开另外一个有趣的话题,即深度学习框架是如何和ONNX进行交互的?笔者基于OneFlow深度学习框架做了一些和ONNX交互的工作,所以目前对OneFlow和ONNX的交互过程较为熟悉,

2021-04-04 21:21:11 33

原创 【从零开始学深度学习编译器】二,TVM中的scheduler

0x0. 前言在【从零开始学深度学习编译器】一,深度学习编译器及TVM 介绍我们已经知道TVM可以将各种深度学习训练框架的模型(计算图)导入Relay,然后调用build接口自动生成target代码如c,llvm等。在深度学习编译器中,自动代码生成是和Graph IR表示同等重要的概念,而scheduler又是自动代码生成的核心概率,本篇文章就结合TVM源码来探索一下scheduler。...

2021-03-27 19:08:58 23

原创 【从零开始学深度学习编译器】一,深度学习编译器及TVM 介绍

0x0. 介绍大家好呀,在过去的半年到一年时间里,我分享了一些算法解读,算法优化,模型转换相关的一些文章。这篇文章是自己开启学习深度学习编译器的第一篇文章,后续也会努力更新这个系列。这篇文章是开篇,所以我不会具体讲解TVM的知识,更多的是介绍一下我自己眼中的深度学习编译器是什么?以及为什么我要选择学习TVM,最后我也会给出一个让读者快速体验TVM效果的一个开发环境搭建的简要教程。0x1. 为什么需要深度学习编译器?深度学习编译器这个词语,我们可以先拆成两个部分来看。首先谈谈深度学习领域。从训练框架角

2021-03-20 17:03:54 111

原创 onnx2pytorch和onnx-simplifer新版介绍

【GiantPandaCV导语】本文是ONNX2Pytorch思路分享以及onnx-simplifier新版简要介绍。ONNX2Pytorch工具已经测试了onnx model zoo中的大量分类模型并转换正确,欢迎使用,github地址:https://github.com/BBuf/onnx2nn。GiantPandaCV几个月前遭受恶意举报,今天终于解除封印了。感谢众多粉丝们的长期等待和支持,我们会在此继续分享学习经验。0x0. 背景ONNX作为微软的神经网络模型的开放格式被各个框架广泛应用,包括

2021-03-03 08:53:27 223 1

原创 ONNX再探

0x0. 前言接着上篇文章,继续探索ONNX。这一节我将主要从盘点ONNX模型部署有哪些常见问题,以及针对这些问题提出一些解决方法,另外本文也会介绍一个可以快速用于ONNX模型推理验证的框架onnxruntime。如果你想用ONNX作为模型转换和部署的工具,可以耐心看下去。今天要讲到的ONNX模型部署碰到的问题大多来自于一些知乎上关于ONNX模型部署的文章以及自己使用ONNX进行模型部署过程中发现的,有一定的实践意义。0x1. 导出ONNX这里以Pytorch为例,来介绍一下要把Pytorch模型导

2021-02-28 16:51:04 37

原创 LeetCode 226场周赛题解

【GiantPandaCV导语】这是LeetCode第226场周赛题解,本周考察的知识点有枚举,贪心,前缀和,Manacher回文算法,动态规划,图论等。比赛链接https://leetcode-cn.com/contest/weekly-contest-226/最终Rank:231 / 4033。题目一:盒子中小球的最大数量解题思路:按照题意模拟一下即可。时间复杂度:O(highLimit−lowLimit+1)∗4O(highLimit-lowLimit+1)*4O(highLi.

2021-01-31 17:09:13 38

原创 ONNX初探

0x00. 背景最近看了一些ONNX的资料,一个最大的感受就是这些资料太凌乱了。大多数都是在介绍ONNX模型转换中碰到的坑点以及解决办法。很少有文章可以系统的介绍ONNX的背景,分析ONNX格式,ONNX简化方法等。所以,综合了相当多资料之后我准备写一篇ONNX相关的文章,希望对大家有用。0x01. 什么是ONNX?简单描述一下官方介绍,开放神经网络交换(Open Neural Network Exchange)简称ONNX是微软和Facebook提出用来表示深度学习模型的开放格式。所谓开放就是ONN

2021-01-27 23:15:10 163 1

原创 LeetCode 222场周赛题解

【GiantPandaCV导语】这是LeetCode的第222场周赛的题解,本期考察的知识点有贪心,哈希,二分,LIS等等。比赛链接https://leetcode-cn.com/contest/weekly-contest-222/题目一:卡车上的最大单元数解题思路:贪心,优先选取装载的单元数量多的箱子即可。时间复杂度:O(nlogn)解题代码如下:class Solution {public: struct node{ int x, y; n

2021-01-10 16:20:09 40

原创 LeetCode 221场周赛题解

【GiantPandaCV导语】这是LeetCode的第221场周赛的题解,本期考察的知识点有模拟,贪心,优先队列,01Trie树等。比赛链接https://leetcode-cn.com/contest/weekly-contest-221/题目一:判断字符串的两半是否相似解题思路:直接模拟即可。时间复杂度:O(s.length)解题代码如下:class Solution {public: bool yuan(char c){ if(c=='a'||c=='e

2021-01-03 10:21:42 45

原创 再思考可变形卷积

【GiantPandaCV导语】重新思考可变形卷积。逐行代码解析,希望读者能一起完全理解DCN并明白DCN的好处,同时也清楚DCN的缺点在哪里。最后对什么时候可以选择DCN有一个较好的认识。添加了注释的代码链接:https://github.com/BBuf/pytorch-deform-conv-v2-explain0x00. 前言之前一篇文章DCN V1代码阅读笔记 已经介绍过可变形卷积这种技术,但比较可惜代码部分似乎没有解析清楚。后面,MSRA出了一篇DCNV2,也没来得及讲,因此今天这篇文章.

2020-12-28 23:13:37 99 1

原创 LeetCode第42场双周赛赛后题解

【GiantPandaCV导语】这是LeetCode的第42场双周赛的题解,公众号后面每周周末会以主条推文的方式更新当前周的Leetcode比赛的解题报告,并整理成一个面试刷题专栏,有需要的读者可以关注一下。另外,以前的比赛的解题报告我也会从当前这个时间点往前补,原创的解题报告会尽量以次条的方式放在CV相关的推文下方,不影响目前公众号的布局。本次周赛考察的知识点有:c++ stl,队列,堆栈,模拟,找规律,数论,前缀和等。如果你只是关心面试,看前面三题就好,最后一题有亿点难。比赛链接https:/.

2020-12-27 19:09:08 45 1

原创 如何阅读一个前向推理框架?以NCNN为例。

【GiantPandaCV导语】自NCNN开源以来,其它厂商的端侧推理框架或者搭载特定硬件芯片的工具链层出不穷。如何去繁从简的阅读一个深度学习推理框架十分重要,这篇文章记录了我是如何阅读NCNN框架的,希望对一些不知道如何下手的读者有一点启发。0x00. 想法来源CNN从15年的ResNet在ImageNet比赛中大放异彩,到今天各种层出不穷的网络结构被提出以解决生活中碰到的各种问题。然而,在CNN长期发展过程中,也伴随着很多的挑战,比如如何调整算法使得在特定场景或者说数据集上取得最好的精度,如何将.

2020-12-20 12:16:39 243 3

原创 道阻且长_再探矩阵乘法优化

【GiantPandaCV导语】本文记录了笔者最近的一些优化gemm的思路和实现,这些思路大多是公开的方案,例如来自how-to-optimize-gemm工程的一些优化手段,来自ncnn的一些优化手段等。最终,笔者目前实现的版本在armv7a上可以达到50%左右的硬件利用率(这个利用率的确还不高,笔者也是一步步学习和尝试,大佬请忽略),本文记录了这些思路以及核心实现方法。改好的行主序代码(x76+armv7a)可以直接访问https://github.com/BBuf/how-to-optimize-ge

2020-12-05 19:19:50 69

原创 人脸106点Caffe模型如何部署到MsnhNet

1. 前言MsnhNet之前只支持Pytorch模型直接转换到MsnhNet框架可以运行的模型文件,并且我们在之前的Pytorch转Msnhnet模型思路分享分享了这个转换的思路。最近拿到了一些需要部署在MsnhNet的Caffe模型,所以...

2020-11-18 21:56:40 101 1

原创 基于how-to-optimize-gemm初探矩阵乘法优化

1. 前言这次,我们来聊一个轻松一点的话题,那就是给你一个矩阵A和一个矩阵B,使用矩阵乘法获得目标矩阵C,相信大家都不难写出下面的代码:#define A( i, j ) a[ (i)*lda + (j) ]#define B( i, j ) b[ (i)*ldb + (j) ]#define C( i, j ) c[ (i)*ldc + (j) ]// gemm C = A * B + Cvoid MatrixMultiply(int m, int n, int k, float *a, in

2020-11-05 18:26:53 138

原创 如何判断算法是否有可优化空间?

计算Armv7a架构理论gflops以及自己写的某个算法的gflops的方法,另外提供了一个脚本可以显示native版矩阵乘法各个尺寸对应的gflops。1. 前言之前一直在写一些算法怎么优化,包括算法逻辑甚至是更加底层一些的文章,但是测试工作都做得比较随意,也就是粗略的比较时间。最近准备学习一下矩阵乘法的优化,觉得这种比较方式实际上是看不出太多信息的,比如不知道当前版本的算法在某块指定硬件上是否还存在优化空间。因此,这篇文章尝试向大家介绍另外一个算法加速的评判标准,即算法的浮点峰值(gflops).

2020-10-26 23:21:04 91

原创 Im2Col+GEMM的改进方法MEC,一种更加高效的卷积计算策略

1. 前言前面介绍了Im2Col+GEMM来实现卷积以在某些条件下获得更好的访存和计算效率,详见:详解Im2Col+Pack+Sgemm策略更好的优化卷积运算 。然后,最近偶然发现了Im2Col+GEMM的一个改进版本即MEC: Memory-efficient Convolution for Deep Neural Network ,这是发表在ICML 2017年的文章,它主要优化了Im2Col+GEMM计算策略中的内存消耗,并且也能提升一点速度,是一个不错的卷积加速算法。所以我在这里结合论文以及代码实

2020-10-10 22:35:21 304

原创 详解卷积中的Winograd加速算法

1. 为什么会引入WinoGrad?做过ACM/OI的朋友大家应该对FFT并不默认,我们知道对于两个序列的乘法通过FFT可以从原始O(n^2)复杂度变成O(nlogn),所以我们就会想着FFT这个算法是否可以应用到我们计算卷积中来呢?当然是可以的,但是FFT的计算有个问题哦,会引入复数。而移动端是不好处理复数的,对于小卷积核可能减少的计算量和复数运算带来的降速效果是不好说谁会主导的。所以在这种情况下,针对卷积的WinoGrad算法出现了,它不仅可以类似FFT一样降低计算量,它还不会引入复数,使得卷积的运算

2020-09-28 16:12:24 766 1

原创 AI移动端优化之Im2Col+Pack+Sgemm

1. 前言最近在给MsnhNet贡献Arm端的代码,地址详见:https://github.com/msnh2012/Msnhnet ,然后对于卷积一种最常见的方法就是Im2Col加上Sgemm,我也尝试去实现一把,我参考了NCNN的部分实现并且花了一周业余时间通过手推的方式终于想清楚了这个算法及其Pack优化版本,所以是时候将我的理解分享给想了解这个算法的读者了。2. Im2Col+Sgemm计算卷积原理相信大家对于卷积的概念都非常熟悉了,这里就不再赘述。我说一下一般卷积的计算方式有哪些吧。首先是暴

2020-09-13 19:35:12 190

原创 基于NCNN的3x3可分离卷积再思考盒子滤波

1. 前言前面已经做了一系列实验来优化盒子滤波算法,然后经nihui大佬提醒又获得了2种优化方法,再加上提到过的将原始矩阵进行转置,将盒子滤波的行方向求和进行规避,或者能获得进一步加速。为了验证这些想法,就有了这篇文章。上篇论文我们已经将半径为333的盒子的滤波在A53上优化到了145.92ms145.92ms145.92ms,图像的分辨率是4032×30244032\times 30244032×3024,所以本次系列实验的BaseLine已经明确,接下来就开始新的优化历程吧。2. 将盒子滤波看成卷积

2020-08-12 23:49:39 142

原创 【Arm端算法优化笔记】一,一步步优化盒子滤波算法

1. 前言这是我自己做的移动端算法优化笔记的第一篇文章。我入门移动端的时间其实很短,也是今年刚开始接触Neon优化并尝试用Neon来做一些算法加速工作,之前我做过系列的X86上的SSE/AVX算法加速文章分享。但那个系列已经比较久没有更新了,一是因为我日常做的都是和移动端相关的一些算法工作,二是因为我最近变懒了,所以希望新开这个专题重新找到一点分享算法优化文章的热情(笑)。关于这篇文章,其实之前梁德澎作者已经分享过了,即【AI移动端算法优化】二,移动端arm cpu优化学习笔记之一步步优化盒子滤波 ,所

2020-08-06 22:45:54 492 2

原创 Pytorch实现卷积神经网络训练量化(QAT)

1. 前言深度学习在移动端的应用越来越广泛,而移动端相对于GPU服务来讲算力较低并且存储空间也相对较小。基于这一点我们需要为移动端定制一些深度学习网络来满足我们的日常续需求,例如SqueezeNet,MobileNet,ShuffleNet等轻量级网络就是专为移动端设计的。但除了在网络方面进行改进,模型剪枝和量化应该算是最常用的优化方法了。剪枝就是将训练好的大模型的不重要的通道删除掉,在几乎不影响准确率的条件下对网络进行加速。而量化就是将浮点数(高精度)表示的权重和偏置用低精度整数(常用的有INT8)来近

2020-07-28 23:37:59 1684 3

原创 低比特量化之DoreFa-Net理论与实践

1. 前言之前已经算是仔细的讲解过DoreFaNet的原理了,见:深度学习算法优化系列十二 | 旷视科技 DoReFa-Net ,所以今天这篇文章的目的是如何将DoreFaNet进行应用,在此之前还是简单回顾原理。2. DoreFaNet和前面我们讲过的BNN和TWN相比,DoreFa-Net并没有针对卷积层输出的每一个...

2020-07-25 21:58:40 1172 1

原创 Group Sample:一个简单有效的目标检测升点Trick

1. 前言今天为大家介绍一个CVPR 2019提出的一个有趣的用于人脸检测的算法,这个算法也可以推广到通用目标检测中,它和OHEM,Focal Loss有异曲同工之妙。论文地址为:http://openaccess.thecvf.com/content_CVPR_2019/papers/Ming_Group_Sampling_for_Scale_Invariant_Face_Detection_CVPR_2019_paper.pdf。2. 出发点这篇文章的出发点是,我们在做人脸检测或者通用目标检测时,

2020-07-23 23:46:15 172

原创 Keras2NCNN?Yes

1. 前言这篇文章是记录笔者最近想尝试将自己开发的分割工程模型利用NCNN部署所做的一些工作,经过一些尝试和努力算是找到了一种相对简单的方法。因此这篇文章将笔者的工作分享出来,希望对使用Keras训练模型但苦于无法部署到移动端,或者使用Keras模型通过ONNX转到其它推理框架时碰到各种OP支持无法解决的读者带来些许帮助。2. 转换路线我的转换路线为:Keras->Caffe->NCNN首先Caffe->NCNN是NCNN默认支持的,所以不需要我做任何工作,所以我的工作主要就是K

2020-07-21 21:10:14 165

原创 低比特量化之XNOR-Net

论文:XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks链接:https://arxiv.org/abs/1603.05279代码:http://allenai.org/plato/xnornet1. 前言前面已经介绍了2篇低比特量化的相关文章,分别为:基于Pytorch构建一个可训练的BNN 以及 基于Pytorch构建三值化网络TWN 。在讲解那2篇文章的时候可能读者会发现某些小的知识点出现.

2020-07-19 23:09:09 146

原创 基于Pytorch构建三值化网络TWN
原力计划

1. 前言三值化网络是2016年由Fengfu Li在论文《Ternary Weight Networks》中提出来的,它相比二值化网络具有更好的效果。论文地址如下:https://arxiv.org/abs/1605.04711 。2. 出发点首先,论文提出多权值比二值化具有更好的网络泛化能力。论文中提到,在VGG,GoogLeNet 和残留网络等最新的网络体系结构中,最常用的卷积滤波器大小为3×33\times 33×3,如果使用上一节提到的二值权重,有23×3=5122^{3\times 3}=

2020-07-14 23:39:28 215

原创 基于Pytorch构建一个可训练的BNN
原力计划

1. 前言一般我们在构建CNN的时候都是以32位浮点数为主,这样在网络规模很大的情况下就会占用非常大的内存资源。然后我们这里来理解一下浮点数的构成,一个float32类型的浮点数由一个符号位,8个指数位以及23个尾数为构成,即:符号位[ ] + 指数位[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] + 尾数[ ]*23我们可以看到,每个float32浮点数里面一共有223=838860872^{23}=83886087223=83886087个二进制对应表示2232^{23}223个数

2020-07-06 23:20:58 1056

原创 YOLOV3剪枝方法汇总
原力计划

1. 前言上一篇推文如何让你的YOLOV3模型更小更快? 给大家介绍了一下利用BN层的γ\gammaγ参数对YOLOV3检测模型进行剪枝,最终获得了2倍的速度增加。但需要注意的是,这个剪枝有一些缺点,例如剪枝剪得不够极限,可能还有一些冗余通道存在,另外shortcut这种层也是没有剪枝的。并且剪枝之后模型的通道数会变成一些奇怪的数字例如232323,这在推理过程中会浪费一部分硬件的内存,并对模型的推理速度产生影响。最后,很多人在简单的场景中倾向使用YOLOV3-Tiny这个小模型,当然我们可以通过剪枝使得

2020-07-02 20:53:00 1365 3

原创 如何让你的YOLOV3模型更小更快?
原力计划

1. 前言之前讲过关于模型剪枝的文章深度学习算法优化系列七 | ICCV 2017的一篇模型剪枝论文,也是2019年众多开源剪枝项目的理论基础 并分析过如何利用这个通道剪枝算法对常见的分类模型如VGG16/ResNet/DenseNet进行剪枝,见深度学习算法优化系列八 | VGG,ResNet,DenseNe模型剪枝代码实战 ,感兴趣的可以去看看。这篇推文主要是介绍一下如何将这个通道剪枝算法应用到YOLOV3上,参考的Github工程地址为:https://github.com/Lam1360/YOLO

2020-07-01 21:09:47 483

原创 【从零开始学Mask RCNN】四,RPN锚框生成和Proposal生成
原力计划

1. Mask RCNN Anchor 生成Mask RCNN的锚框生成和SSD的锚框生成策略类似(SSD的锚框生成策略见:【资源分享】从零开始学习SSD教程) ,都遵循以下规则:Anchor的中心点的个数等于特征图像素个数Anchor的生成是围绕中心点的Anchor框的坐标最终需要归一化到0-1之间,即相对输入图像的大小我们知道Faster RCNN只是在一个特征图上铺设Anchor,而Mask RCNN引入了FPN之后使用了多层特征,这样和SSD类似都是在多个特征图上铺设Anchor,不过

2020-06-27 22:55:23 547

原创 【从零开始学Mask RCNN】三,Mask RCNN网络架构解析及TensorFlow和Keras的交互
原力计划

0. 前言上一节把握了一下Mask RCNN项目的整体逻辑,这一节主要从TensorFlow和Keras的交互以及Mask RCNN的网络结构入手来分析一下。1. TensorFlow和Keras的交互说明相信熟悉Keras的同学都经常看到这行代码:import keras.backend as K如果Keras的后端是基于TensorFlow的,那么这个K就是Tensorflow了,那么自然会想一个问题,为什么不直接import tensorflow呢,这样不是多此一举吗?这个问题就涉及到Ten

2020-06-25 17:11:18 331

原创 【从零开始学Mask RCNN】二,Mask RCNN框架整体把握

1. 前言这一节将从代码库里面的demo.ipynb笔记本入手,来整体理解一下Mask RCNN的网络架构。2. 代码理解首先导入需要用到的

2020-06-23 21:52:32 299

原创 利用渐进校准网络(PCN)的实时角度无关人脸检测
原力计划

0. 前言熟悉人脸相关业务的读者应该对下面这个3D人脸模型比较熟悉:可以看到在3D空间中人脸的位姿主要包含三种:平面内旋转角(左右歪头问题):roll。平面外左右旋转(正脸,侧脸问题):yaw。平面外俯仰(仰头,低头问题):pitch。然后现在的很多人脸检测器比如我们介绍过的MTCNN,FaceBoxes,RetinaFace等等都实现了高精度的实时人脸检测,但这些算法往往都是在直立的人脸上表现很好,在角度极端的情况下表现不好。通过上面的3D模型我们想到,人除了正坐和站立,还有各种各样的姿

2020-06-20 20:01:57 389

原创 【从零开始学Mask RCNN】一,原理回顾&&项目文档翻译
原力计划

0. 前言从今天开始,我将为大家逐步介绍Mask RCNN这个将检测和分割统一起来的框架的具体原理以及详细代码解读,项目地址为官方代码,基于Keras框架实现,如果你不会Keras也并不要紧,我会尽量将原理和代码的解释做到位。另外说一下我自己的写作安排,在完成Mask RCNN之后,我将继续分享一些深度学习网络的一些加速技巧例如模型剪枝,低比特量化,指令集优化等等,希望大家可以继续支持我。(文末点在看就是最大的支持啦!)1. 算法总览Mask-RCNN是一个实例分割(Instance segmenta

2020-06-17 22:06:19 266

原创 目标检测算法之Light-Head R-CNN

1. 前言今天要为大家介绍一个RCNN系列的一篇文章,这也是COCO 2017挑战赛上获得冠军的方案。之前我们讲过了很多RCNN系列的检测论文了,例如Faster RCNN(请看公众号的Faster RCNN电子书)以及R-FCN 目标检测算法之NIPS 2016 R-FCN(来自微软何凯明团队) 。然后R-FCN是对Faster RCNN网络进行了改进,去掉了全连接层使得网络成为了全卷积网络,从而提升了检测速度,那么还能不能继续对R-FCN进行改进呢?Light-Head RCNN就实现了这一改进,我们

2020-06-14 19:29:38 186

cs231-斯坦福大学-李菲菲-2016 课件

深度学习,李菲菲教授,课件。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

2018-01-30

ncsdk-windows.rar

vs2015 movidius 神经计算棒一代 ncsdk windows c++调用SequeezeNet的代码。

2019-09-10

just_sort的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除