- 博客(1014)
- 资源 (24)
- 收藏
- 关注
原创 RK3588芯片NPU的使用:yolov8-pose例子图片检测在安卓系统部署与源码深度解析(rknn api)
该方法对检测模型的输出进行后处理,包括 检测框解码、置信度过滤、非极大值抑制(NMS)以及关键点坐标映射,最终输出人体检测框和对应的关键点信息,封装在object_detect_result_list中。SDK支持的查询命令很多,具体参考官方文档:04_Rockchip_RKNPU_API_Reference_RKNNRT_V2.3.0_CN.pdf。:用于 RKNN_QUERY_IN_OUT_NUM 命令的返回结果,存储模型的输入/输出张量数量。没什么好说的,输入设置完毕后,执行模型推理。
2025-04-25 21:30:00
1544
原创 RK3588芯片NPU的使用:官方rknn_yolov5_android_apk_demo运行与解读
本文将完成两项任务:- 官方的调用摄像头动态目标识别例子运行在rk3588的开发板上。- 解读源码以增加对rknn开发的认识。
2025-04-24 20:00:00
1175
原创 RK3588芯片NPU的使用:Windows11 Docker中编译YOLOv8-Pose C Demo并在开发板运行实践
本文将在RKNN Docker环境中编译YOLOv8-Pose C Demo,并通过adb工具部署到RK3588开发板。
2025-04-23 20:00:00
383
原创 RK3588芯片NPU的使用:PPOCRv4例子在安卓系统部署
将PPOCRv4 C语言例子适配安卓端,提供选择图片后进行OCR识别功能。PPOCRv4 C语言例子请参考之前的博文。
2025-04-21 20:00:00
1052
原创 PP-OCR的安卓端部署
如果直接用官方提供的模型去跑,其实还是挺香的,OCR是飞浆框架下最厉害的库了。安卓部署官方也有demo的(当然是几年前的),PaddleOCR–deploy下去找,我也放到csdn下载了。例子中使用的PP-OCRv2的模型,想想现在都PP-OCRv4了,是不是心中着急?代码结构依然是Java层+Native层。
2025-04-18 20:00:00
1233
原创 手把手部署YOLOv5到RK3588安卓端:NPU加速与JNI/C/Kotlin接口开发指南
本次实践成功在RK3588安卓平台上部署了YOLOv5目标检测模型,并充分利用其NPU硬件加速能力,实现了高效的边缘计算推理。通过本Demo,我们完成了从模型转换(PyTorch→RKNN)、JNI接口封装到安卓应用集成的全流程验证,为后续产品级AI应用开发提供了可复用的技术方案。
2025-04-14 03:00:00
1054
原创 基于Termux的Android平台C++控制台程序开发指南
今天我想通过一个例子,让你的C++控制台程序直接可以运行在安卓手机上。这样你写的那些运行在PC上的好玩的C++程序,直接无痛的搞到手机上了,还不需要构建真正的安卓应用,是不是有点意思?学习C++的同学们听到此消息都兴奋的不得了!
2025-04-13 12:00:36
1213
原创 RK3588芯片NPU的使用及编程入门:rknn_model_zoo的yolov5 c++ example源码解析
今天深入分析了rknn_model_zoo中YOLOv5的C++示例代码,包括:- 模型加载与初始化的完整流程(init_yolov5_model)- 图像预处理中的Letterbox实现细节- NPU推理过程的关键API调用(rknn_inputs_set/rknn_run)- 后处理中的置信度过滤与NMS实现
2025-04-11 20:00:00
1089
原创 2025年的Android NDK 快速开发入门
十年前写过一篇介绍NDK开发的文章,今天看来已经发生了很多变化,NDK开发变得更加容易了。下面就写一篇当下NDK开发快速入门。**原生开发套件 (NDK) **是一套工具,使开发者能够在 Android 应用中使用 C 和 C++ 代码,并提供众多平台库。官方默认使用CMake作为构建工具。
2025-04-11 19:00:00
957
原创 RK3588芯片NPU的使用:Windows11 Docker中运行PPOCRv4例子
PPOCR-Det核心功能实现**文字区域检测**,基于DB++(Dynamic Binarization++)算法改进,支持多尺度特征融合和自适应阈值预测。
2025-04-10 20:00:00
513
1
原创 写给新人的深度学习扫盲贴:ReLu和梯度
什么是梯度?梯度是多元函数在某一点处变化率最大的方向及其大小,是导数的多维推广。数学定义:对函数fx1x2xnfx1x2...xn∇f∂f∂x1∂f∂x2∂f∂xn∇f∂x1∂f∂x2∂f...∂xn∂f物理意义:梯度指向函数值增长最快的方向,梯度大小表示变化速率。
2025-04-09 20:00:00
838
1
原创 RK3588芯片NPU的使用:Windows11 Docker中运行MobileNet模型以及部署到开发板进行目标检测
Docker启动后,来到rknn_model_zoo中mobilenet的示例目录│ ├── cpp # Cpp项目例子,部署会用到 │ ├── model # 模型目录 │ │ ├── bell.jpg # 例子中用到的待检测图片 │ │ ├── download_model.sh # 下载模型脚本 │ │ └── synset.txt # ImageNet类别标签文件 │ └── python # Python工具链 | └── mobilenet.py # 核心工具脚本。
2025-04-08 20:00:00
951
原创 MobileNet简介:一个轻量化的神经网络架构|嵌入式与边缘计算
从V1到V4,MobileNet的演进体现了轻量化模型设计的三大趋势:**自动化架构搜索**、**硬件协同优化**与**通用性提升**。随着MobileNet V4在移动生态中的普及,边缘智能将加速渗透至智能安防、工业检测、远程医疗等领域。
2025-04-07 20:00:00
1165
原创 RKNN-Toolkit2支持的深度学习框架技术浅析:Caffe、TensorFlow、TF Lite、ONNX、DarkNet与PyTorch
RKNN-Toolkit2支持的深度学习框架包括Caffe、TensorFlow、TensorFlow Lite、ONNX、DarkNet和PyTorch。
2025-04-06 09:00:00
937
原创 RK3588芯片NPU的使用:Windows11使用RKNN Docker运行YOLOv5目标检测模型
瑞芯微的NPU工具集调整后放到新的仓库,名曰,它包括toolkit2和toolkit-lit2,以及rknpu2。下面简单介绍这三个库都是干什么的。
2025-04-05 09:00:00
1150
1
原创 RK3588芯片NPU的使用:Ubuntu 22.04安装RKNN SDK V2.3.0环境运行YOLOv5目标检测模型(万字详述)
本文详细介绍了在 **Ubuntu 22.04** 系统下搭建 **RKNN SDK V2.3.0** 开发环境的完整流程,并实现了在 **RK3588 开发板(Android 系统)** 上通过 **NPU 加速** 运行 **YOLOv5 目标检测模型**(万字详述)。
2025-04-04 03:00:00
859
原创 写给新人的深度学习扫盲贴:向量与矩阵
张量是更高维度的推广:标量(0阶)、向量(1阶)、矩阵(2阶)、三维张量(3阶)等。例如,RGB图像可表示为三维张量(高度×宽度×通道数)。:矩阵用于表示线性变换、数据集(如图像像素矩阵)或多变量关系。例如,在Python中,矩阵以二维数组表示(如。:向量常用于描述空间中的点、力、速度等具有方向性的量。在计算机中,向量通常以一维数组存储(如NumPy中的。矩阵是二维数组,由行(row)和列(column)构成,可视为2阶张量。的一维数组,可视为1阶张量。向量是线性代数中的基本对象,定义为具有。
2025-04-03 20:00:00
948
原创 边缘检测技术现状初探2:多尺度与形态学方法
实际应用中常使用离散近似核(如9×9核,σ=1.4)提取高频信息,实现多分辨率边缘检测。模拟小波多尺度分解,通过。多尺度边缘检测通过在。
2025-04-02 20:00:00
666
原创 边缘检测技术现状初探1
边缘检测是计算机视觉与图像处理领域的基石技术,其**核心目标**是通过识别图像中亮度、色彩或纹理的突变区域,提取物体轮廓与结构信息。随着工业自动化、自动驾驶、医学影像分析等领域的快速发展,边缘检测技术经历了从传统算子到深度学习模型的演进,并在实际应用中不断崭露头角。
2025-04-01 20:00:00
844
原创 OCR第三个方案:PP-OCRv4的初步探索
PP-OCRv3(2022):采用SVTR识别架构,中文识别准确率突破80%PP-OCRv4(2023):融合Transformer与CNN的混合架构,实现多维度性能突破
2025-03-31 20:00:00
1881
原创 探索OCR的第二个方案:EasyOCR
EasyOCR是由Jaided AI团队开发的开源OCR引擎,基于PyTorch深度学习框架构建,支持80+种语言的文本识别,包含简体中文(ch_sim)、繁体中文(ch_tra)、英语(en)等主流语言。多场景适应:支持自然场景文本、文档密集文本、手写体等多种类型端到端流程:集成CRAFT检测模型+CRNN识别模型的完整解决方案硬件加速:支持GPU加速推理(CUDA/MPS)与CPU模式灵活扩展:允许用户自定义识别网络和模型存储路径。
2025-03-30 10:00:00
910
原创 Tesseract OCR技术初探(Python调用)
Tesseract是由HP实验室于1985年研发的光学字符识别引擎,2005年由Google开源并持续维护至今。其核心技术经历了三个阶段演进:
2025-03-29 20:00:00
1074
原创 药盒日期识别技术初步设想V1.0
硬件配置多光谱成像模块使用3组环形LED光源(白光、红外850nm、紫外365nm)多角度照射例:钢印在红外光下因材质吸热差异形成热成像轮廓,紫外光激发喷码荧光物质高速工业相机选型高速工业相机:例如Basler acA4112-20um(4096×3000分辨率,300fps),搭配远心镜头消除透视畸变触发同步装置光电传感器触发拍摄,确保药盒进入视场中心±2mm误差内成像参数优化钢印检测:采用偏振光成像抑制镜面反射,曝光时间≤1ms以避免运动模糊喷码检测:使用同轴光照明。
2025-03-29 10:00:00
653
原创 认识一家公司:瑞芯微(Rockchip Electronics Co., Ltd.)以及旗下的两款芯片RK3288\RK3588
公司近期购置了两块开发板(Android),一个是RK3288另一个是RK3588。前者应对普通嵌入式场景,后者主打AI机器视觉(边缘计算设备)。下面找了些资料做个对比。一、 制程与架构RK3288采用28nm HKMG 工艺,集成四核Cortex-A17CPU,主频最高1.8GHz,搭配,支持OpenGL ES 3.0、DirectX 11等图形接口。RK3588采用8nm LP 工艺,采用四核Cortex-A76(2.4GHz)+ 四核Cortex-A55(1.8GHz)
2025-03-28 22:00:00
1465
原创 了解图像质量评价指标PSNR
峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)是数字图像处理领域最经典的客观质量评价指标之一。其核心思想是通过计算原始图像与失真图像之间的均方误差(MSE)来衡量失真程度,再通过信号最大功率与噪声功率的比值进行量化评估。对于大小为m×nm \times nm×n的灰度图像III和KKK均方误差(MSE)MSE1mn∑i0m−1∑j0n−1Iij−Kij2MSEmn1i0∑m−1。
2025-03-28 20:00:00
2233
原创 《数字图像处理》第五章 图像复原与重建学习笔记(5.1~5.3)
滤波器类型适用场景优点缺点算术均值滤波高斯噪声、均匀噪声计算简单边缘模糊逆谐波均值滤波盐粒/胡椒噪声(Q值控制)可定向抑制脉冲噪声需选择合适Q值中值滤波椒盐噪声保留边缘高密度噪声效果差自适应中值滤波高密度椒盐噪声动态窗口、细节保护计算复杂度高自适应局部降噪滤波非均匀噪声分布动态噪声估计需已知全局噪声方差。
2025-03-27 20:00:00
1891
原创 《数字图像处理》第四章 频率域滤波简要学习笔记以及频率域滤波与空间域滤波的区别
频率域滤波基于傅里叶变换,将图像从空间域(像素位置)转换到频率域(频率分量)。在频率域中,低频分量对应图像中灰度变化缓慢的区域(如背景),高频分量对应灰度剧烈变化的区域(如边缘和噪声)。这种转换使得滤波操作可以通过调整不同频率分量的幅值来实现,例如抑制噪声(高频)或模糊图像(低频)。
2025-03-26 20:00:00
2179
原创 《数字图像处理》第三章 3.8 基于模糊技术的图像强度变换与空间滤波学习笔记
在传统图像处理中,灰度变换和空间滤波通常采用确定性数学方法(如直方图均衡化、均值滤波等)。但当面对图像中的不确定性(如光照不均、噪声模糊性、边缘过渡区)时,模糊逻辑(Fuzzy Logic)展现出了独特优势。
2025-03-25 20:00:00
488
原创 《数字图像处理》第三章 3.7 混合空间增强法笔记:原理、实现与Python实战
混合空间增强法通过组合多种互补的增强技术,解决单一滤波器难以处理的复杂图像问题(如噪声干扰、动态范围狭窄等)。其核心思路是:根据冈萨雷斯教材,流程如下:
2025-03-24 20:00:00
430
原创 《数字图像处理》第三章 3.6 锐化空间滤波器学习笔记:原理、实现与代码演示
锐化空间滤波器是一种**增强图像高频分量**的技术,其核心目的是**突出边缘、纹理等细节**,使图像在视觉上更清晰。与平滑(低通)滤波器不同,锐化滤波器通过放大灰度突变区域的梯度或二阶微分值来实现细节增强 。
2025-03-23 10:00:00
571
原创 普通人怎样用好DeepSeek?——AI革命中的个体跃迁指南
在这场人与AI的共舞中,真正的赢家不是技术恐惧者,也不是盲目崇拜者,而是那些深谙"AI思维"的实践者:他们知道如何用提示词唤醒模型潜力,懂得在数据洪流中守护人性温度,更善于在机器智能与人类创造力之间找到黄金分割点。当普通人握紧这把"数字瑞士军刀",改变命运的密码,就藏在每一次与DeepSeek的深度对话之中。
2025-03-22 21:00:00
822
原创 机器视觉中的相机标定:原理、方法与实践
相机标定(Camera Calibration)是指通过实验或算法手段确定相机的内部参数(如焦距、主点坐标、畸变系数)和外部参数(如旋转矩阵、平移向量)的过程。这些参数共同描述了相机的成像模型,使得三维空间中的物体能够被准确投影到二维图像平面上。相机标定作为机器视觉的基石,其精度直接影响整个系统的可靠性。传统方法如张正友标定法已成熟应用于工业场景,而自标定与深度学习技术正推动其在复杂环境中的普及。
2025-03-22 10:00:00
866
原创 Camera2 API拍照失败问题实录:从错误码到格式转换的排坑之旅
排错时别忘记:**设备兼容性检查清单**- 输出格式支持性验证- 对焦模式白名单检查- 最大分辨率兼容测试- HAL层日志的输出
2025-03-21 21:15:00
753
原创 3.5 平滑滤波
平滑线性滤波器是基于线性运算的空间滤波方法,通过对邻域像素进行加权平均实现噪声抑制。其核心特征是输出像素值为邻域像素的线性组合。主要的线性滤波器有均值滤波器高斯滤波器以及方框滤波器。统计排序滤波器属于非线性滤波,基于邻域像素值的排序结果选择输出值。gxy排序fxiyjij∈S→选择特定序位值g(x,y) = \text{排序}\{f(x+i,y+j)\}_{(i,j)\in S} \rightarrow \text{选择特定序位值}gxy排序fxiyji。
2025-03-21 15:00:00
604
原创 《数字图像处理》第三章 3.4 空间滤波基础学习笔记
相关与卷积的区别:卷积需旋转滤波器180°,两者在对称核下等效。实践意义相关用于模式匹配(如边缘检测中的Sobel算子)。卷积用于线性系统建模(如高斯模糊)。边界处理:需根据场景选择策略,避免边缘失真。实际效果对比相关操作适合需要保留方向信息的场景(如梯度计算)。卷积操作更符合物理系统的响应特性(如光学成像)。
2025-03-20 15:00:00
1825
原创 为什么大家都在推荐Jupyter Notebook?以及如何上手?
Jupyter Notebook 是一款基于 Web 的交互式计算环境,允许用户创建和共享包含实时代码、数学公式、可视化图表及文本说明的文档。它最初专为 Python 设计,但现已支持 40 多种编程语言(如 R、Julia、Scala 等),尤其成为。若安装失败,尝试添加 --user 参数或切换镜像源(如 -i https://pypi.tuna.tsinghua.edu.cn/simple)。若浏览器未自动打开,手动访问终端中显示的 URL(如 http://localhost:8888)。
2025-03-19 20:30:00
814
原创 《数字图像处理》第三章3.3直方图处理学习笔记
直方图处理是数字图像增强的基础技术,均衡化与规定化分别适用于全局和特定对比度调整需求。Python实现中需注意离散灰度级的影响及插值方法的选择。实际应用中可结合CLAHE或分通道处理优化结果,同时需权衡增强效果与噪声控制。
2025-03-19 15:00:00
980
原创 《数字图像处理》第三章 灰度变换与空间滤波学习笔记(3.1-3.2)反转、对数、幂律、分段线性等变换
空间域指图像平面本身,其处理直接作用于像素矩阵(区别于频率域的变换处理)。
2025-03-17 09:08:34
1196
瑞芯微RKNN安卓NPU部署实战:PPOCRv4 OCR推理Demo
2025-04-21
基于RK3588边缘计算的安卓端NPU加速YOLOv5推理实践:入门Demo实现
2025-04-13
AI easyOCR的中文、英文和检测模型
2025-03-29
Android 相机开发入门指南:CameraX 与 Camera2 的终极对比与实践源码
2025-03-13
script.module.keyboard.chinese-2.0.0
2014-12-24
VC++玩转炫酷悬浮窗3源码
2014-09-05
VC++玩转炫酷悬浮窗2---不规则窗体的实现源码
2014-08-22
VC++玩转炫酷悬浮窗1---悬浮窗的实现
2014-08-21
GDI+不规则窗口
2014-08-05
VC++ CALLBACK
2014-06-07
开机自启动VC实现
2014-05-21
HowToPreferenceActivity
2014-03-06
Android Read Excel sourcecode
2013-11-27
Activity传递类对象源码
2011-12-17
WM StopWatch 源码
2011-10-09
StopWatch源码
2011-10-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人