关闭

稀疏矩阵构成的广义表

标签: 应用控件
349人阅读 评论(0) 收藏 举报
分类:

   题目要求:

假设n n的稀疏矩阵A采用三元组表示,设计一个程序exp6-4.cpp实现如下功能:
 (1)生成如下两个稀疏矩阵的三元组a和b;
 (2)输出a转置矩阵的三元组;
 (3)输出a+b的三元组;
 (4)输出a b的三元组。


输入代码:

#include<iostream>
#include<stdio.h>
#include<malloc.h>
using namespace std;
#define M 4//稀疏矩阵行数
#define N 4//稀疏矩阵列数
#define MaxSize 100//稀疏矩阵中非零元素最多的个数
int z[M][N];
typedef int ElemType;
typedef struct
{
    int r;//行号
    int c;//列号
    ElemType d;//元素值
} TupNode;
typedef struct
{
    int rows;//行数
    int cols;//列数
    int nums;//非零元素个数
    TupNode data[MaxSize];
} TSMatrix; //三元组顺序表定义
/*
对一个二维稀疏矩阵创建其三元组表示
*/
void CreatMat(TSMatrix &t,ElemType A[M][N])
{
    int i,j;
    t.rows=M;
    t.cols=N;
    t.nums=0;
    for(i=0; i<M; i++)
    {
        for(j=0; j<N; j++)
            if(A[i][j]!=0)//只存贮非零元素
            {
                t.data[t.nums].r=i;
                t.data[t.nums].c=j;
                t.data[t.nums].d=A[i][j];
                t.nums++;
            }
    }
}
/*
输出三元组
*/
void DispMat(TSMatrix t)
{
    int i;
    if(t.nums<=0)//没有非零元素时返回
    {
        return ;
    }
    printf("\t%d\t%d\t%d\n",t.rows,t.cols,t.nums);
    printf("\t----------------------\n");
    for(i=0; i<t.nums; i++)
    {
        printf("\t%d\t%d\t%d\n",t.data[i].r,t.data[i].c,t.data[i].d);
    }
}
/*
三元组元素赋值
*/
bool Value(TSMatrix &t,ElemType x,int i,int j)
{
    int k=0,k1;
    if(i>=t.rows||j>=t.rows)
        return false;
    while(k<t.nums&&t.data[k].r<i)//查找行
        k++;
    while(k<t.nums&&i==t.data[k].r&&j>t.data[k].c)//查找列
        k++;
    if(t.data[k].r==i&&t.data[k].c==j)//存在这样的元素
        t.data[k].d=x;
    else
    {
        for(k1=t.nums-1; k1>=k; k1--)
        {
            t.data[k1+1].r=t.data[k1].r;
            t.data[k1+1].c=t.data[k1].c;
            t.data[k1+1].d=t.data[k1].d;
        }
        t.data[k].r=i;
        t.data[k].c=j;
        t.data[k].d=x;
        t.nums++;
    }
    return true;
}
/*
矩阵转置
*/
void TranTat(TSMatrix t,TSMatrix &tb)
{
    int p,q=0,v;//q为tb.data的下标
    tb.rows=t.cols;
    tb.cols=t.rows;
    tb.nums=t.nums;
    if(t.nums!=0)//当存在非零元素时执行转置
    {
        for(v=0; v<t.cols; v++)
            for(p=0; p<t.nums; p++)
                if(t.data[p].c==v)
                {
                    tb.data[q].r=t.data[p].c;
                    tb.data[q].c=t.data[p].r;
                    tb.data[q].d=t.data[p].d;
                    q++;
                }
    }
}
/*
两个稀疏矩阵相加的运算
*/
bool MatAdd(TSMatrix a,TSMatrix b,TSMatrix &c)
{
    int i=0,j=0,k=0;
    ElemType v;
    if(a.rows!=b.rows||a.cols!=b.cols)
        return false;
    c.rows=a.rows;
    c.cols=a.cols;//c的行列数与a的相同
    while(i<a.nums&&j<b.nums)//处理a和b的每一个元素
    {
        if(a.data[i].r==b.data[j].r)//行号相同
        {
            if(a.data[i].c<b.data[j].c)//a元素的列号小宇b元素的列号
            {
                c.data[k].r=a.data[i].r;
                c.data[k].c=a.data[i].c;
                c.data[k].d=a.data[i].d;
                k++;
                i++;
            }
            else if(a.data[i].c>b.data[j].c)//a元素的列号大于b元素的列号
            {
                c.data[k].r=b.data[j].r;
                c.data[k].c=b.data[j].c;
                c.data[k].d=b.data[j].d;
                k++;
                j++;
            }
            else//a元素的列号等于b元素的列号
            {
                v=a.data[i].d+b.data[j].d;
                if(v!=0)
                {
                    c.data[k].r=a.data[i].r;
                    c.data[k].c=a.data[i].c;
                    c.data[k].d=v;
                    k++;
                }
                i++;
                j++;
            }
        }
        else if(a.data[i].r<b.data[j].r)//a元素的行号小于b元素的行号
        {
            c.data[k].r=a.data[i].r;
            c.data[k].c=a.data[i].c;
            c.data[k].d=a.data[i].d;
            k++;
            i++;
        }
        else
        {
            c.data[k].r=b.data[j].r;
            c.data[k].c=b.data[j].c;
            c.data[k].d=b.data[j].d;
            k++;
            j++;
        }
        c.nums=k;
    }
    return true;
}
/*
两个稀疏矩阵相乘的运算
*/
void MatMul(int a[M][N],int b[M][N],int z[M][N])
{
    int i,j,k;
    for (k=0; k<N; k++)
        for(i=0; i<N; i++)
            for (j=0; j<N; j++)
                z[i][k]+=a[i][j]*b[j][k];
}
int main()
{
    int  A1[M][N]= {{1,0,3,0},{0,1,0,0},{0,0,1,0},{0,0,1,1}};
    int  B1[M][N]= {{3,0,0,0},{0,4,0,0},{0,0,1,0},{0,0,0,2}};
    TSMatrix a,b,c;
    CreatMat(a,A1);
    CreatMat(b,B1);
    cout<<"a的三元组: "<<endl;
    DispMat(a);
    cout<<"b的三元组: "<<endl;
    DispMat(b);
    cout<<"a转置为c:"<<endl;
    TranTat(a,c);
    cout<<"c的三元组: "<<endl;
    DispMat(c);
    cout<<"c=a+b: "<<endl;
    MatAdd(a,b,c);
    cout<<"c的三元组: "<<endl;
    DispMat(c);
    cout<<"c=a*b: "<<endl;
    MatMul(A1,B1,z);
    CreatMat(c,z);a
    cout<<"c的三元组: "<<endl;
    DispMat(c);
    return 0;
}





运行截图:



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:232164次
    • 积分:9071
    • 等级:
    • 排名:第2048名
    • 原创:701篇
    • 转载:6篇
    • 译文:0篇
    • 评论:66条
    最新评论