Symmetric Tree -- LeetCode

原题链接:  http://oj.leetcode.com/problems/symmetric-tree/  
这道题是树的题目,本质上还是树的遍历。这里无所谓哪种遍历方式,只需要对相应结点进行比较即可。一颗树对称其实就是看左右子树是否对称,一句话就是左同右,右同左,结点是对称的相等。题目中也要求了递归和非递归的解法,关于这个我们已经介绍过很多次了,不了解的朋友可以看看 Binary Tree Inorder Traversal ,里面介绍了几种树的遍历方式。这道题目也就是里面的程序框架加上对称性质的判断即可。遍历这里就不多说了,我们主要说说结束条件,假设到了某一结点,不对称的条件有以下三个:(1)左边为空而右边不为空;(2)左边不为空而右边为空;(3)左边值不等于右边值。根据这几个条件在遍历时进行判断即可。算法的时间复杂度是树的遍历O(n),空间复杂度同样与树遍历相同是O(logn)。递归方法的代码如下: 
public boolean isSymmetric(TreeNode root) {
    if(root == null)
        return true;
    return helper(root.left, root.right);
}
public boolean helper(TreeNode root1, TreeNode root2)
{
    if(root1 == null && root2 == null)
        return true;
    if(root1 == null || root2 == null)
        return false;
    if(root1.val != root2.val)
        return false;
    return helper(root1.left,root2.right) && helper(root1.right,root2.left);
}
下面的非递归方法是使用层序遍历来判断对称性质,代码如下:
public boolean isSymmetric(TreeNode root) {
    if(root == null)
        return true;
    if(root.left == null && root.right == null)
        return true;
    if(root.left == null || root.right == null)
        return false;
    LinkedList<TreeNode> q1 = new LinkedList<TreeNode>();
    LinkedList<TreeNode> q2 = new LinkedList<TreeNode>();
    q1.add(root.left);
    q2.add(root.right);
    while(!q1.isEmpty() && !q2.isEmpty())
    {
        TreeNode n1 = q1.poll();
        TreeNode n2 = q2.poll();
        
        if(n1.val != n2.val)
            return false;
        if(n1.left == null && n2.right != null || n1.left != null && n2.right == null)
            return false;
        if(n1.right == null && n2.left != null || n1.right != null && n2.left == null)
            return false;
        if(n1.left != null && n2.right != null)
        {
            q1.add(n1.left);
            q2.add(n2.right);
        }
        if(n1.right != null && n2.left != null)
        {
            q1.add(n1.right);
            q2.add(n2.left);
        }            
    }
    return true;
}
从上面可以看出非递归方法比起递归方法要繁琐一些,因为递归可以根据当前状态(比如两个都为空)直接放回true,而非递归则需要对false的情况一一判断,不能如递归那样简练。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值