Median of Two Sorted Arrays -- LeetCode

原题链接:  http://oj.leetcode.com/problems/median-of-two-sorted-arrays/  
这道题比较直接的想法就是用 Merge Sorted Array 这个题的方法把两个有序数组合并,当合并到第(m+n)/2个元素的时候返回那个数即可,而且不用把结果数组存起来。算法时间复杂度是O(m+n),空间复杂度是O(1)。因为代码比较简单,就不写出来了,跟 Merge Sorted Array 比较类似,大家可以参照这个题目的解法。

接下来我们考虑有没有优化的算法。优化的思想来源于order statistics,在算法导论10.3节中提到。问题等价于求两个array的第k=(m+n)/2(假设m和n分别是两个数组的元素个数)大的数是多少。基本思路是每次通过查看两个数组的第k/2大的数(假设是A[k/2],B[k/2]),如果两个A[k/2]=B[k/2],说明当前这个数即为两个数组剩余元素的第k大的数,如果A[k/2]>B[k/2], 那么说明B的前k/2个元素都不是我们要的第k大的数,反之则排除A的前k/2个,如此每次可以排除k/2个元素,最终k=1时即为结果。总的时间复杂度为O(logk),空间复杂度也是O(logk),即为递归栈大小。在这个题目中因为k=(m+n)/2,所以复杂度是O(log(m+n))。比起第一种解法有明显的提高,代码如下: 

public double findMedianSortedArrays(int A[], int B[]) {
    if((A.length+B.length)%2==1)
        return helper(A,B,0,A.length-1,0,B.length-1,(A.length+B.length)/2+1);
    else
        return (helper(A,B,0,A.length-1,0,B.length-1,(A.length+B.length)/2)  
               +helper(A,B,0,A.length-1,0,B.length-1,(A.length+B.length)/2+1))/2.0;
}
private int helper(int A[], int B[], int i, int i2, int j, int j2, int k)
{
    int m = i2-i+1;
    int n = j2-j+1;
    if(m>n)
        return helper(B,A,j,j2,i,i2,k);
    if(m==0)
        return B[j+k-1];
    if(k==1)
        return Math.min(A[i],B[j]);
    int posA = Math.min(k/2,m);
    int posB = k-posA;
    if(A[i+posA-1]==B[j+posB-1])
        return A[i+posA-1];
    else if(A[i+posA-1]<B[j+posB-1])
        return helper(A,B,i+posA,i2,j,j+posB-1,k-posA);
    else
        return helper(A,B,i,i+posA-1,j+posB,j2,k-posB);
}
实现中还是有些细节要注意的,比如有时候剩下的数不足k/2个,那么就得剩下的,而另一个数组则需要多取一些数。但是由于这种情况发生的时候,不是把一个数组全部读完,就是可以切除k/2个数,所以不会影响算法的复杂度。 
这道题的优化算法主要是由order statistics派生而来,原型应该是求topK的算法,这个问题是非常经典的问题,一般有两种解法,一种是用quick select(快速排序的subroutine),另一种是用heap。 复杂度是差不多的,有兴趣可以搜一下,网上资料很多,topK问题在海量数据处理中也是一个非常经典的问题,所以还是要重视。

可以使用二分查找算法来解决这个问题。 首先,我们可以将两个数组合并成一个有序数组,然后求出中位数。但是,这个方法的时间复杂度为 $O(m + n)$,不符合题目要求。因此,我们需要寻找一种更快的方法。 我们可以使用二分查找算法在两个数组中分别找到一个位置,使得这个位置将两个数组分成的左右两部分的元素个数之和相等,或者两部分的元素个数之差不超过 1。这个位置就是中位数所在的位置。 具体来说,我们分别在两个数组中二分查找,假设现在在第一个数组中找到了一个位置 $i$,那么在第二个数组中对应的位置就是 $(m + n + 1) / 2 - i$。如果 $i$ 左边的元素个数加上 $(m + n + 1) / 2 - i$ 左边的元素个数等于 $m$ 个,或者 $i$ 左边的元素个数加上 $(m + n + 1) / 2 - i$ 左边的元素个数等于 $m + 1$ 个,则这个位置就是中位数所在的位置。 具体的实现可以参考以下 Java 代码: ```java public double findMedianSortedArrays(int[] nums1, int[] nums2) { int m = nums1.length, n = nums2.length; if (m > n) { // 保证第一个数组不大于第二个数组 int[] tmp = nums1; nums1 = nums2; nums2 = tmp; int t = m; m = n; n = t; } int imin = 0, imax = m, halfLen = (m + n + 1) / 2; while (imin <= imax) { int i = (imin + imax) / 2; int j = halfLen - i; if (i < imax && nums2[j - 1] > nums1[i]) { imin = i + 1; // i 太小了,增大 i } else if (i > imin && nums1[i - 1] > nums2[j]) { imax = i - 1; // i 太大了,减小 i } else { // i 是合适的位置 int maxLeft = 0; if (i == 0) { // nums1 的左边没有元素 maxLeft = nums2[j - 1]; } else if (j == 0) { // nums2 的左边没有元素 maxLeft = nums1[i - 1]; } else { maxLeft = Math.max(nums1[i - 1], nums2[j - 1]); } if ((m + n) % 2 == 1) { // 总元素个数是奇数 return maxLeft; } int minRight = 0; if (i == m) { // nums1 的右边没有元素 minRight = nums2[j]; } else if (j == n) { // nums2 的右边没有元素 minRight = nums1[i]; } else { minRight = Math.min(nums1[i], nums2[j]); } return (maxLeft + minRight) / 2.0; } } return 0.0; } ``` 时间复杂度为 $O(\log\min(m, n))$。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值