update:2014-2-27 LinJM @HQU 『 libsvm专栏地址:http://blog.csdn.net/column/details/libsvm.html 』
在svm中,训练是一个十分重要的步骤,下面我们来看看svm的train部分。
在libsvm中的svm_train中分别有回归和分类两部分,我只对其中分类做介绍。
分类的步骤如下:
- 统计类别总数,同时记录类别的标号,统计每个类的样本数目
- 将属于相同类的样本分组,连续存放
- 计算权重C
- 训练n(n-1)/2 个模型
- 初始化nozero数组,便于统计SV
- //初始化概率数组
- 训练过程中,需要重建子数据集,样本的特征不变,但样本的类别要改为+1/-1
- //如有必要,先调用svm_binary_svc_probability
- 训练子数据集svm_train_one
- 统计一下nozero,如果nozero已经是真,就不变,否则改为真
- 输出模型
- 主要是填充svm_model
- 清除内存
函数中调用过程如下:
svm_train-->svm_train_one-->solve_c_svc(for example)-->s.Solve
//
// Interface functions
//重点函数:svm训练函数
//根据选择的算法,来组织参加训练的分样本,以及进行训练结果的保存。其中会对样本进行初步的统计。
svm_model *svm_train(const svm_problem *prob, const svm_parameter *param)
{
svm_model *model = Malloc(svm_model,1);//#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
model->param = *param;
model->free_sv = 0; // XXX
if(param->svm_type == ONE_CLASS ||
param->svm_type == EPSILON_SVR ||
param->svm_type == NU_SVR)
{
// regression or one-class-svm
model->nr_class = 2;
model->label = NULL;
model->nSV = NULL;
model->probA = NULL; model->probB = NULL;
model->sv_coef = Malloc(double *,1);
if(param->probability &&
(param->svm_type == EPSILON_SVR ||
param->svm_type == NU_SVR))
{
model->probA = Malloc(double,1);
model->probA[0] = svm_svr_probability(prob,param);
}
decision_function f = svm_train_one(prob,param,0,0);
model->rho = Malloc(double,1);
model->rho[0] = f.rho;
int nSV = 0;
int i;
for(i=0;i<prob->l;i++)
if(fabs(f.alpha[i]) > 0) ++nSV;
model->l = nSV;
model->SV = Malloc(svm_node *,nSV);
model->sv_coef[0] = Malloc(double,nSV);
model->sv_indices = Malloc(int,nSV);
int j = 0;
for(i=0;i<prob->l;i++)
if(fabs(f.alpha[i]) > 0)
{
model->SV[j] = prob->x[i];
model->sv_coef[0][j] = f.alpha[i];
model->sv_indices[j] = i+1;
++j;
}
free(f.alpha);
}
else
{
// classification
int l = prob->l;
int nr_class;
int *label = NULL;
int *start = NULL;
int *count = NULL;
int *perm = Malloc(int,l);
// group training data of the same class对训练样本进行处理,同类整合到一起
svm_group_classes(prob,&nr_class,&label,&start,&count,perm);
if(nr_class == 1)
info("WARNING: training data in only one class. See README for details.\n");
svm_node **x = Malloc(svm_node *,l);
int i;
for(i=0;i<l;i++)
x[i] = prob->x[perm[i]];
// calculate weighted C
double *weighted_C = Malloc(double, nr_class);
for(i=0;i<nr_class;i++)
weighted_C[i] = param->C;
for(i=0;i<param->nr_weight;i++)
{
int j;
for(j=0;j<nr_class;j++)
if(param->weight_label[i] == label[j])
break;
if(j == nr_class)
fprintf(stderr,"WARNING: class label %d specified in weight is not found\n", param->weight_label[i]);
else
weighted_C[j] *= param->weight[i];
}
// train k*(k-1)/2 models
bool *nonzero = Malloc(bool,l);
for(i=0;i<l;i++)
nonzero[i] = false;
decision_function *f = Malloc(decision_function,nr_class*(nr_class-1)/2);
double *probA=NULL,*probB=NULL;
if (param->probability)
{
probA=Malloc(double,nr_class*(nr_class-1)/2);
probB=Malloc(double,nr_class*(nr_class-1)/2);
}
int p = 0;
for(i=0;i<nr_class;i++)
for(int j=i+1;j<nr_class;j++)
{
svm_problem sub_prob;
int si = start[i], sj = start[j];
int ci = count[i], cj = count[j];
sub_prob.l = ci+cj;
sub_prob.x = Malloc(svm_node *,sub_prob.l);
sub_prob.y = Malloc(double,sub_prob.l);
int k;
for(k=0;k<ci;k++)
{
sub_prob.x[k] = x[si+k];
sub_prob.y[k] = +1;
}
for(k=0;k<cj;k++)
{
sub_prob.x[ci+k] = x[sj+k];
sub_prob.y[ci+k] = -1;
}
if(param->probability)
svm_binary_svc_probability(&sub_prob,param,weighted_C[i],weighted_C[j],probA[p],probB[p]);
f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]);
for(k=0;k<ci;k++)
if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0)
nonzero[si+k] = true;
for(k=0;k<cj;k++)
if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0)
nonzero[sj+k] = true;
free(sub_prob.x);
free(sub_prob.y);
++p;
}
// build output
model->nr_class = nr_class;
model->label = Malloc(int,nr_class);
for(i=0;i<nr_class;i++)
model->label[i] = label[i];
model->rho = Malloc(double,nr_class*(nr_class-1)/2);
for(i=0;i<nr_class*(nr_class-1)/2;i++)
model->rho[i] = f[i].rho;
if(param->probability)
{
model->probA = Malloc(double,nr_class*(nr_class-1)/2);
model->probB = Malloc(double,nr_class*(nr_class-1)/2);
for(i=0;i<nr_class*(nr_class-1)/2;i++)
{
model->probA[i] = probA[i];
model->probB[i] = probB[i];
}
}
else
{
model->probA=NULL;
model->probB=NULL;
}
int total_sv = 0;
int *nz_count = Malloc(int,nr_class);
model->nSV = Malloc(int,nr_class);
for(i=0;i<nr_class;i++)
{
int nSV = 0;
for(int j=0;j<count[i];j++)
if(nonzero[start[i]+j])
{
++nSV;
++total_sv;
}
model->nSV[i] = nSV;
nz_count[i] = nSV;
}
info("Total nSV = %d\n",total_sv);
model->l = total_sv;
model->SV = Malloc(svm_node *,total_sv);
model->sv_indices = Malloc(int,total_sv);
p = 0;
for(i=0;i<l;i++)
if(nonzero[i])
{
model->SV[p] = x[i];
model->sv_indices[p++] = perm[i] + 1;
}
int *nz_start = Malloc(int,nr_class);
nz_start[0] = 0;
for(i=1;i<nr_class;i++)
nz_start[i] = nz_start[i-1]+nz_count[i-1];
model->sv_coef = Malloc(double *,nr_class-1);
for(i=0;i<nr_class-1;i++)
model->sv_coef[i] = Malloc(double,total_sv);
p = 0;
for(i=0;i<nr_class;i++)
for(int j=i+1;j<nr_class;j++)
{
// classifier (i,j): coefficients with
// i are in sv_coef[j-1][nz_start[i]...],
// j are in sv_coef[i][nz_start[j]...]
int si = start[i];
int sj = start[j];
int ci = count[i];
int cj = count[j];
int q = nz_start[i];
int k;
for(k=0;k<ci;k++)
if(nonzero[si+k])
model->sv_coef[j-1][q++] = f[p].alpha[k];
q = nz_start[j];
for(k=0;k<cj;k++)
if(nonzero[sj+k])
model->sv_coef[i][q++] = f[p].alpha[ci+k];
++p;
}
free(label);
free(probA);
free(probB);
free(count);
free(perm);
free(start);
free(x);
free(weighted_C);
free(nonzero);
for(i=0;i<nr_class*(nr_class-1)/2;i++)
free(f[i].alpha);
free(f);
free(nz_count);
free(nz_start);
}
return model;
}
本文地址:http://blog.csdn.net/linj_m/article/details/19848837
微博:林建民-机器视觉