机器学习中的非均衡分类问题

原创 2015年11月18日 09:32:27

非均衡分类问题是指在分类器训练时,正例数目和反例数目不相等(相差很大),或者错分正反例导致的代价不同(可从代价矩阵观测)时存在的问题。

而大多数情况下,不同类别的分类代价并不相等,而诸如信用卡欺诈等场景中,正反例的样本数目相差巨大,这就需要一些新的分类器性能度量方法和技术,来处理上述非均衡问题。


1、分类器性能度量指标

分类器学习常用的错误率指标会掩盖样例如何被错分的细节,可以采用更好的性能度量指标1 —— 正确率TP/(TP+FP)和召回率TP/(TP+FN)。

实际上,单独满足其中一个指标高性能较容易,但构造一个同时高正确率有高召回率的分类器很难。至于具体选择正确率还是召回率,关键在于场景或者说研究问题,例如在购物刷单问题中,正确率远比召回率更重要。

此外可以采用性能度量指标2 —— ROC曲线,即接收者操作特征曲线。

ROC曲线给出的是当阈值变化时,假阳率和真阳率之间的变化情况。因此,我们可以通过观察ROC曲线来调节分类器的阈值,使得分类器的性能最好处于ROC曲线的左上角。由ROC曲线衍生的AUC(曲线下的面积)指标给出了分类器的平均性能值。


def plotROC(predStrengths, classLabels):
    import matplotlib.pyplot as plt
    cur = (1.0,1.0)	# current plot node
    ySum = 0.0 # for AUC
    numPosClas = sum(numpy.array(classLabels)==1.0)
	numNegClas = len(classLabels) - numPosClas
    yStep = 1/float(numPosClas)
    xStep = 1/float(numNegClas)
    sortedIndicies = predStrengths.argsort()
    fig = plt.figure()
    fig.clf()
    ax = plt.subplot(111)
    for index in sortedIndicies.tolist()[0]:
        if classLabels[index] == 1.0:
            delX = 0; delY = yStep;
        else:
            delX = xStep; delY = 0;
            ySum += cur[1]
        ax.plot([cur[0],cur[0]-delX],[cur[1],cur[1]-delY], c='b')
        cur = (cur[0]-delX,cur[1]-delY)
    ax.plot([0,1],[0,1],'b--')
    plt.xlabel('False positive rate'); plt.ylabel('True positive rate')
    plt.title('ROC curve for AdaBoost horse colic detection system')
    ax.axis([0,1,0,1])
    plt.show()
    print "the Area Under the Curve is: ",ySum*xStep


2、基于代价敏感的学习方法

一方面,重构训练数据集。即不改变已有算法,而是根据样本的不同错分代价给训练集中的每一个样本赋一个权值,接着按权重对原始样本集进行重构。

另一方面,引入代价敏感因子,设计出代价敏感的分类算法。通常可以将各分类器学习时的目标函数改造成最小化代价函数,即对小样本赋予较高的代价,大样本赋予较小的代价,期望以此来平衡样本之间的数目差异。


3、改造分类器的训练数据 —— 过抽样或者欠抽样

过抽样,即保留样本数目小的类别的所有样本同时,再进行复制或者进行插值,扩大规模。注意对小样本数目的类别的样本们进行插值有可能造成过拟合。

欠抽样,即欠抽样或者剔除样本数目大的类别中的部分样本,缩小规模。进行剔除时,尽量选择那些离决策边界较远的样例。


版权声明:本文为博主原创文章,未经博主允许不得转载。

机器学习实战笔记之非均衡分类问题

通常情况下,我们直接使用分类结果的错误率就可以做为该分类器的评判标准了,但是当在分类器训练时正例数目和反例数目不相等时,这种评价标准就会出现问题。这种现象也称为非均衡分类问题。此时有以下几个衡量标准。...

应对非均衡数据集分类问题的八大策略

应对非均衡数据集分类问题的八大策略

adaBoost算法学习笔记

本文参考自《机器学习实战》 其中adaboostTrainDS()函数的返回值要修改为aggClassEst.T,不然ROC曲线会画不出来 #coding=utf-8 from num...
  • lxslx
  • lxslx
  • 2017年06月26日 15:53
  • 152

正确率、召回率及ROC曲线

如果将一个正例判断为正例,称为真正例(TP),类似的,将一个反例判断为反例,称为真反例(TN),将一个正例判断为反例,称为伪反例(FN),将一个反例判断为正例,即伪正例(FP);      1、正确...

基于单层决策树的 AdaBoost的训练及测试过程

1、整个实现的伪代码python: 对每次迭代: 利用buildstump()函数(上一篇提到过)找到最佳的单层决策树; 计算alpha(利用该决策树的错误率进行计算); 计算新的每个样本...

模型评估的方法: ROC,AUC,RMSE等指标

在别的地方看到了一篇有关总结模型评估的文章,感觉讲解还是挺有点内容的,转载过来 学习学习 分享下 模型评估的方法 一般情况来说,F1评分或者R平方(R-Squared value)等数值评...

机器学习 非均衡分类问题

相关文章1.其他分类性能度量指标:正确率,召回率及ROC曲线混淆矩阵(confusion matrix):可视化工具,特别用于监督学习,在无监督学习一般叫做匹配矩阵。 混淆矩阵 预测结果 +1...

机器学习实战4:Adaboost提升:病马实例+非均衡分类问题

原文地址:http://www.cnblogs.com/rongyux/p/5621854.html Adaboost提升算法是机器学习中很好用的两个算法之一,另一个是SVM支持向量机;机器学习面试...
  • roslei
  • roslei
  • 2016年07月16日 12:52
  • 277

【读书笔记】机器学习实战 第7章 7.7节非均衡分类问题

机器学习实战 7.7节 非均衡分类问题分类性能指标: 错误率 指错分样本的比例,这样的度量掩盖了样例是如何被错分的事实。有一个普遍适用的称为混淆矩阵- 真实(+1)真实(−1)预测(+1)真正例...

非均衡分类问题

前言 在我们研究非均衡分类这个问题前,我们先来讨论下一个问题。众所周知,在我们一开始学习诸多分类算法(如k-近邻算法,决策树,朴素贝叶斯,logistic,支持向量机,AdaBoost)时,我们一般都...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:机器学习中的非均衡分类问题
举报原因:
原因补充:

(最多只允许输入30个字)