机器学习实践中应避免的七种常见错误

http://dataunion.org/11624.html 作者:Cheng-Tao Chu‘s  LinkedIn 在机器学习领域,每个给定的建模问题都存在几十种解法,每个模型又有难以简单判定是否合理的不同假设。在这种情况下,大多数从业人员倾向于挑选他们熟悉的建模...

2015-08-06 20:05:58

阅读数 1018

评论数 0

scikit-learn:在实际项目中用到过的知识点(总结)

零、所有项目通用的: http://blog.csdn.net/mmc2015/article/details/46851245(数据集格式和预测器) http://blog.csdn.net/mmc2015/article/details/46852755(加载自己的原始数据) (适合文本...

2015-07-27 08:34:35

阅读数 6475

评论数 4

看过的较好的资源和待看的资源

网上的资源很多,本人只推荐看过的自认为较好的推荐给大家: 机器学习基础: 推荐: Tom Mitchell: http://book.douban.com/subject/1102235/  中英文对照,了解该方向的专业名词,了解大概算法、思想。 http://www.cs.cmu.edu/~...

2015-06-04 10:14:24

阅读数 1576

评论数 0

Leetcode刷题指南

参考:https://blog.csdn.net/qq_39521554/article/details/79160815   二、刷题方法 方法一:按照题目出现频率刷题 顺序参考文章最后的部分 方法二:标签法 按照网站给大家排列的不同tags,起到模块化的复习和学习作用。举个例子:比如...

2019-02-13 19:21:48

阅读数 68

评论数 0

很认真的中了一篇AAMAS2019的文章:Modelling the Dynamic Joint Policy of Teammates with Attention Multi-agent DDPG

【有中相同会议的小伙伴记得联系我哦,可以一起商量着把会议相关的事情做好】 这篇文章是利用深度强化学习(Deep Reinforcement Learning)做多智能体合作(multi-agent cooperation)。 主要贡献点在于使用了一个attention机制 in a princ...

2019-01-23 15:46:03

阅读数 155

评论数 0

dropout为什么有用。Dropout在RNN中的应用综述。

  想起来前两天小师弟问我问题,为什么dropout是有用的,看起来像是一个有bug的操作。   这里谈下自己的理解,不一定正确: 1)dropout的经典解读之一是network的ensemble,每次drop不同的weights,从而形成不同的sub-network,最后ensembl...

2018-09-25 20:40:16

阅读数 476

评论数 0

Cross-Entropy Method (CEM, 交叉熵方法) 与强化学习

转自:https://the0demiurge.blogspot.com/2017/08/cross-entropy-method-cem.html   前言 之前阅读Deep Reinforcement Learning: Pong from Pixels的时候,作者在文中最后提到“One...

2018-08-17 21:25:24

阅读数 605

评论数 0

TensorFlow中实用的知识:在静态图中写条件判断语句

https://mp.weixin.qq.com/s?__biz=MzU2OTA0NzE2NA==&mid=2247493703&idx=1&sn=7944d78c692d5f7590ba052bbf75a235&am...

2018-07-28 08:31:45

阅读数 936

评论数 0

CS224N(Natural Language Processing with Deep Learning)总结:模型、任务、作业、作业中涉及到的特殊代码

  模型:word2vec(skip-gram、CBOW)、GloVe、DNN/BP/Tips for training、RNN/GRU/LSTM、Attention、CNN、TreeRNN 应用:Neural Machine Translation、Dependency Parsing、...

2018-07-16 20:58:33

阅读数 573

评论数 2

PAKDD2018小结

会议整体概况610+投稿量long paper:57,9.63%short paper:107,18.07%【placeholder for pictures】投稿量最多的是applications录稿量最多的是mining graph and network data【placeholder f...

2018-06-14 08:37:17

阅读数 1715

评论数 1

The gossip problem【多智能体通信达成全局一致性需要的最少通信次数】

https://www.sciencedirect.com/science/article/pii/0012365X73901210https://arxiv.org/abs/1511.00867

2018-04-11 13:31:42

阅读数 295

评论数 0

如何解释policy gradient中的baseline具有降低variance的作用

在增强学习中有一大类方法叫policy gradient,最典型的是REINFORCE。在这类方法中,目标函数J(w)(通常是the expectation of long term reward)对policy参数w的gradient为:▽J(w) == E[ ▽logπ(a|s) * retu...

2018-04-09 23:24:22

阅读数 719

评论数 0

如果环境存在random,那么问题还能建模成MDP吗?

李宏毅老师的课程:https://www.youtube.com/watch?v=W8XF3ME8G2I老师说,对于同一个observation/state(atari game的画面),也不一定会采取相同的动作,因为有些actor是stochastic的,选action有一定随机性,这一点好理解...

2018-03-16 08:16:32

阅读数 237

评论数 0

梯度截断的tensorflow实现

gradients = optimizer.compute_gradients(loss, var_list) capped_gradients = [(tf.clip_by_value(grad, -5., 5.), var) for grad, var in gradients if grad...

2018-03-02 09:18:09

阅读数 1473

评论数 2

水了一篇PAKDD2018的文章:Topic-specific Retweet Count Ranking for Weibo

看题目就知道做什么工作:Topic-specific Retweet Count Ranking for Weibo摘要:In this paper, we study \emph{topic-specific} retweet count ranking problem in Weibo. Tw...

2018-02-24 08:26:36

阅读数 1542

评论数 7

使用CNN kernel对图像进行【锐化、模糊、浮雕等】处理

发现一门将tensorflow的不错的课程。 https://web.stanford.edu/class/cs20si/2017/lectures/slides_07.pdf 之前做过一个相机的APP,当时做图片美化,些非常多的代码效果不一定好。 下面这个图提醒我们,其实直接使用CNN...

2018-01-22 16:47:25

阅读数 862

评论数 1

python3练习

参考:http://www.runoob.com/python3/python3-tutorial.html 输入: >>> a=input("input something:") input something:hello world >...

2018-01-15 21:25:46

阅读数 444

评论数 0

2017年AI关键技术盘点:AlphaGo/GAN/Capsule/基于DL的CTR预估/CV/NLP

写的挺好,转一下。 2017年AI技术盘点:关键进展与趋势 原创 2018-01-04 张俊林 人工智能头条 作者 | 张俊林 责编 | 何永灿 人工智能最近三年发展如火如荼,学术界、工业界、投资界各方一起发力,硬件、算法与数据共同发展,不仅仅...

2018-01-05 09:52:31

阅读数 797

评论数 0

通过【端口转发】在服务器上使用TensorBoard

如果是一次转发:https://stackoverflow.com/questions/37987839/how-can-i-run-tensorboard-on-a-remote-serverdown voteHere is what I do to avoid the issues of ma...

2017-11-26 20:56:43

阅读数 2435

评论数 0

MARL(multi-agent reinforcement learning)的一些边缘文章(imitation、transfer、security等)

参考:https://github.com/LantaoYu/MARL-Papers 7.4.2、Inverse MARL [1] Cooperative inverse reinforcement learning by Hadfield-Menell D,Russell S J, ...

2017-11-07 20:40:22

阅读数 2115

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭