0014算法笔记——【动态规划】凸多边形最优三角剖分

本文详细探讨了凸多边形的最优三角剖分问题,结合动态规划理论,阐述了最优子结构的性质,并给出了递推关系式。通过分析,证明了在给定权函数条件下,如何找到使所有三角形权值和最小的三角剖分。最后,展示了程序清单及运行结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

     1、问题相关定义:

     (1)凸多边形的三角剖分将凸多边形分割成互不相交的三角形的弦的集合T。

    (2)最优剖分给定凸多边形P,以及定义在由多边形的边和弦组成的三角形上的权函数w。要求确定该凸多边形的三角剖分,使得该三角剖分中诸三角形上权之和为最小。

     凸多边形三角剖分如下图所示:

          2、最优子结构性质

     若凸(n+1)边形P={V0,V1

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值