第4-3课:凸多边形最优三角剖分问题

本文介绍了凸多边形最优三角剖分问题,这是一个动态规划的经典题目。通过定义子问题的状态和最优子结构,分析了动态规划法的递推关系和边界值,展示了算法的实现思路,强调了记录决策点信息的重要性,以便于反向回溯得到最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

凸多边形上的最优三角剖分问题也是动态规划经典题目,此类问题基本上都是在一个给定的凸多边形上规划三角形分割,使得剖分后得到的一系列三角形的某种结果最优,比如三角形的面积之和最大(或最小),或者是三角形的各边权重之和最大(或最小)等。这一课,我们要介绍的题目是要求根据三角形的权重之和最小来剖分多边形,结合这个题目,希望大家能够掌握如何分析此类问题,并用动态规划的方法设计出求解此类问题的算法实现。

子问题的定义

如图(1)所示,把一个凸多边形分割成多个三角形有多种剖分形式,根据题目给出的条件,每种分割方法得到的三角形的权重之和也各不相同。用动态规划方法解决算法问题,首先要确定子问题和各决策阶段状态的定义,然后给出最优子结构的性质。每个决策阶段的状态,实际上就是子问题在这个决策阶段的解,这个阶段的最优解一般是根据最优子结构的性质由之前各阶段的解和当前的最优决策堆叠出来。因此,用动态规划法解决算法问题的关键是识别出子问题并给出决策状态的定义。

enter image description here

图(1)多边形分割示意图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王晓华-吹泡泡的小猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值