POJ 1845 数学问题

原创 2016年06月02日 10:48:47

求A^B的所有约数(即因子)之和,并对其取模 9901再输出。 (0 <= A,B <= 50000000)


我们首先要用到这样一个定理,数字A的所有因数之和,

对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)

有A的所有因子之和为:

    S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)


所以对于A^B , 假设A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn),那么A^B =  A^B = p1^(k1*B) * p2^(k2*B) *...* pn^(kn*B);


所以

A^B的所有约数之和为:

     sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...* [1+pn+pn^2+...+pn^(an*B)].


每一行都是等比数列,等比求和然后mod9901就可以了,本来可以用逆元来求解的,但是这个题目好像好点问题所以使用的是首位相乘递归二分递归的解法。


#include<cstdio>
using namespace std;
typedef long long ll;
const ll MOD=9901;
ll A,B;

ll pow(ll p,ll n) //快速求幂 
{
	if(n==0)
	{
		return 1;
	}
	if(n&1)
	{
		return ( pow(p,n-1) * p ) % MOD;
	}
	ll ret=pow(p,n/2);
	return ( ret * ret ) % MOD;
}

ll sum(ll p,ll n)  //等比求和 
{
	if(n==0)
	{
		return 1;
	}
	if(n&1)
	{
		return ( (1+pow(p,n/2+1)) * sum(p,n/2) ) % MOD;
	}
	return ( (1+pow(p,n/2+1)) * sum(p,n/2-1) + pow(p,n/2) )% MOD;
} 

ll cal()
{
	ll ans=1;
	ll i,b;
	for(i=2;i*i<=A;i++)
	{
		b=0;
		while(A%i==0)
		{
			A/=i;
			b++;
		}
		ans=(ans*sum(i,b*B))%MOD;
	}
	
	if(A!=1)
	{
		ans=(ans*sum(A,B))%MOD;
	}
	return ans;
}
			
int main()
{
	while(~scanf("%lld%lld",&A,&B))
	{
		printf("%lld\n",cal());
	}
	return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

poj1845数学题

题意: 就是求A的B次方摸9901; 主要是数据太大,五千万的五千万。。。 理解: 开始做的时候看到确实没想法; 然后去做其他题了,之后他们都过了; 我就问了他们,他们说因子分解;...

POJ 1845 Sumdiv(高中数学,推公式,分治)

转自bin神:http://www.cnblogs.com/kuangbin/archive/2012/08/10/2631225.htmlbin神语录(来自群acfun):   1.年轻人,多刷题...

[ACM] POJ 1845 Sumdiv(求A的B次方的所有因子的和,一大堆数学公式...,可做模板)

解题思路: 题意是求A的B次方的所有因子的和。学到了一堆数学公式。。 下面知识点和思路转载于:http://blog.csdn.net/lyy289065406/article/details/664...

POJ_1845_Sumdiv_各种数学

今天做两道数学题被虐哭了

POJ1845-Sumdiv

POJ 3252 Round Numbers(数学问题)

Round Numbers 就是一个表示成二进制的时候0比1多或者相等的正数。 题目是给定一个区间,问在这个区间上的Round Numbers有多少个? (1 ≤ Start Finish ≤ 2...

《挑战程序设计竞赛》2.6.1 数学问题-辗转相除法 AOJ0005 POJ2429 1930(1)

AOJ0005http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=0005题意给定两个数,求其最大公约数GCD以及最小公倍数LCM。思路求...

poj数学问题归类

原文链接: http://hi.baidu.com/sunhaowenprime/item/d7faf6ea35b6dee4fb42ba2a 1.burnside 定理,pol...

《挑战程序设计竞赛》2.6.2 数学问题-素数 AOJ0009 POJ3126 3421 3292 3641

AOJ0009http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=0009题意求不大于n的素数个数。思路素数筛法可解,筛法过程中可顺便统计...

poj 1845 (逆元 + 约数和)

题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出。 思路:  A可以表示为A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)   其中p...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)