POJ 1845 数学问题

原创 2016年06月02日 10:48:47

求A^B的所有约数(即因子)之和,并对其取模 9901再输出。 (0 <= A,B <= 50000000)


我们首先要用到这样一个定理,数字A的所有因数之和,

对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)

有A的所有因子之和为:

    S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)


所以对于A^B , 假设A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn),那么A^B =  A^B = p1^(k1*B) * p2^(k2*B) *...* pn^(kn*B);


所以

A^B的所有约数之和为:

     sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...* [1+pn+pn^2+...+pn^(an*B)].


每一行都是等比数列,等比求和然后mod9901就可以了,本来可以用逆元来求解的,但是这个题目好像好点问题所以使用的是首位相乘递归二分递归的解法。


#include<cstdio>
using namespace std;
typedef long long ll;
const ll MOD=9901;
ll A,B;

ll pow(ll p,ll n) //快速求幂 
{
	if(n==0)
	{
		return 1;
	}
	if(n&1)
	{
		return ( pow(p,n-1) * p ) % MOD;
	}
	ll ret=pow(p,n/2);
	return ( ret * ret ) % MOD;
}

ll sum(ll p,ll n)  //等比求和 
{
	if(n==0)
	{
		return 1;
	}
	if(n&1)
	{
		return ( (1+pow(p,n/2+1)) * sum(p,n/2) ) % MOD;
	}
	return ( (1+pow(p,n/2+1)) * sum(p,n/2-1) + pow(p,n/2) )% MOD;
} 

ll cal()
{
	ll ans=1;
	ll i,b;
	for(i=2;i*i<=A;i++)
	{
		b=0;
		while(A%i==0)
		{
			A/=i;
			b++;
		}
		ans=(ans*sum(i,b*B))%MOD;
	}
	
	if(A!=1)
	{
		ans=(ans*sum(A,B))%MOD;
	}
	return ans;
}
			
int main()
{
	while(~scanf("%lld%lld",&A,&B))
	{
		printf("%lld\n",cal());
	}
	return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

[ACM] POJ 1845 Sumdiv(求A的B次方的所有因子的和,一大堆数学公式...,可做模板)

解题思路: 题意是求A的B次方的所有因子的和。学到了一堆数学公式。。 下面知识点和思路转载于:http://blog.csdn.net/lyy289065406/article/details/664...

POJ 1845 Sumdiv(高中数学,推公式,分治)

转自bin神:http://www.cnblogs.com/kuangbin/archive/2012/08/10/2631225.htmlbin神语录(来自群acfun):   1.年轻人,多刷题...

POJ1845 求A^B的约数之和(数学)

Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S m...

poj1845数学题

题意: 就是求A的B次方摸9901; 主要是数据太大,五千万的五千万。。。 理解: 开始做的时候看到确实没想法; 然后去做其他题了,之后他们都过了; 我就问了他们,他们说因子分解;...

POJ_1845_Sumdiv_各种数学

今天做两道数学题被虐哭了

POJ1845-Sumdiv

  • 2011年07月31日 23:07
  • 8KB
  • 下载

poj 1845 Sumdiv (同余定理,快速幂取余)

题意:求A^B的所有因子的和对9901取余后的值 如:2^3=8,8的因子有 1,2,4,8,所有和为15,取余后也是15 应用定理主要有三个: (1)整数的唯一分解定理: 任意正整数都有且...

POJ 1845(数论 模运算)

此题

poj 1845

题目大意: 给你两个数,A,B.求A^B的所有因子的和. 思路: 先用素数筛掉A.再将可以除以的素数的个数*B.就是A^B的所有基本素数因子及其个数. 1.求其所有因子的和:(假如6^3)则p...

POJ-1845 Sumdiv

Description Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. ...
  • Snow_Me
  • Snow_Me
  • 2016年07月27日 20:57
  • 142
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ 1845 数学问题
举报原因:
原因补充:

(最多只允许输入30个字)