POJ 1845 数学问题

原创 2016年06月02日 10:48:47

求A^B的所有约数(即因子)之和,并对其取模 9901再输出。 (0 <= A,B <= 50000000)


我们首先要用到这样一个定理,数字A的所有因数之和,

对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)

有A的所有因子之和为:

    S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)


所以对于A^B , 假设A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn),那么A^B =  A^B = p1^(k1*B) * p2^(k2*B) *...* pn^(kn*B);


所以

A^B的所有约数之和为:

     sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...* [1+pn+pn^2+...+pn^(an*B)].


每一行都是等比数列,等比求和然后mod9901就可以了,本来可以用逆元来求解的,但是这个题目好像好点问题所以使用的是首位相乘递归二分递归的解法。


#include<cstdio>
using namespace std;
typedef long long ll;
const ll MOD=9901;
ll A,B;

ll pow(ll p,ll n) //快速求幂 
{
	if(n==0)
	{
		return 1;
	}
	if(n&1)
	{
		return ( pow(p,n-1) * p ) % MOD;
	}
	ll ret=pow(p,n/2);
	return ( ret * ret ) % MOD;
}

ll sum(ll p,ll n)  //等比求和 
{
	if(n==0)
	{
		return 1;
	}
	if(n&1)
	{
		return ( (1+pow(p,n/2+1)) * sum(p,n/2) ) % MOD;
	}
	return ( (1+pow(p,n/2+1)) * sum(p,n/2-1) + pow(p,n/2) )% MOD;
} 

ll cal()
{
	ll ans=1;
	ll i,b;
	for(i=2;i*i<=A;i++)
	{
		b=0;
		while(A%i==0)
		{
			A/=i;
			b++;
		}
		ans=(ans*sum(i,b*B))%MOD;
	}
	
	if(A!=1)
	{
		ans=(ans*sum(A,B))%MOD;
	}
	return ans;
}
			
int main()
{
	while(~scanf("%lld%lld",&A,&B))
	{
		printf("%lld\n",cal());
	}
	return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

poj 1845 Sumdiv 数论--等比数列和(逆元或者递归)

逆元求分数取模代码: #include #include #include #include using namespace std; const int mod=9901; int pow...
  • a601025382s
  • a601025382s
  • 2013年10月02日 12:10
  • 1471

POJ1845-Sumdiv

转载请注明出处:優YoU  http://user.qzone.qq.com/289065406/blog/1309237394   大致题意: 求A^B的所有约数(即因子)之和,并对其取模...
  • lyy289065406
  • lyy289065406
  • 2011年07月31日 16:29
  • 5716

POJ 1845:Sumdiv 快速幂+逆元

Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16466   Accepted: 4101 ...
  • u010885899
  • u010885899
  • 2015年09月17日 10:41
  • 1330

poj 1845

const LL mod = 9901LL ; const int maxn = 10008 ; bool is[maxn] ; int ps ; int ...
  • u013491262
  • u013491262
  • 2014年12月13日 13:29
  • 345

poj(1845)

大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出。   解题思路: 要求有较强 数学思维 的题 应用定理主要有三个: 要求有较强 数学思维 的题 应用定理主要有三...
  • u011519618
  • u011519618
  • 2013年08月29日 18:02
  • 348

Poj - 1845

Sumdiv Description Consider two natural numbers A and B. Let S be the sum of all natural divisors ...
  • qq_35608674
  • qq_35608674
  • 2016年07月14日 22:19
  • 41

POJ - 1845

题目链接:https://vjudge.net/problem/POJ-1845题目大意:求A^B的所有因数和解题思路:由约数和定理可以知道,A可以分解成p1^a1*p2^a2*……pk^ak,那么A...
  • Nightmare_ak
  • Nightmare_ak
  • 2017年09月20日 23:15
  • 63

POJ 1845

以前做的忘了保存了,找不到博客,才记得这个大数类的经典没保留下来,重新做一个才得,这样的公式挺难得的,谨记着…… #include using namespace std; long long ...
  • u011466175
  • u011466175
  • 2013年10月10日 13:05
  • 548

poj专题 - 初期数学

第六个专题了,初期数学: (1)、组合数学 1、加法原理和乘法原理以及排列组合   1、hdu 4497 GCD and LCM 题意:已知l,g其中g=gcd(x,y,z),l=lcm(x,y,...
  • consciousman
  • consciousman
  • 2017年02月10日 21:21
  • 564

POJ 1845 Sumdiv 简单数论问题

求aba^b的约数和。 a=∏ipkiia=\prod_i p_i^{k_i} ab=∏ipbkiia^b=\prod_i p_i^{bk_i} Sab=∏i∑j=0bkipji=∏ipbki+...
  • huanghongxun
  • huanghongxun
  • 2016年03月29日 19:18
  • 189
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ 1845 数学问题
举报原因:
原因补充:

(最多只允许输入30个字)