POJ 1845 数学问题

求A^B的所有约数(即因子)之和,并对其取模 9901再输出。 (0 <= A,B <= 50000000)


我们首先要用到这样一个定理,数字A的所有因数之和,

对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)

有A的所有因子之和为:

    S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)


所以对于A^B , 假设A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn),那么A^B =  A^B = p1^(k1*B) * p2^(k2*B) *...* pn^(kn*B);


所以

A^B的所有约数之和为:

     sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...* [1+pn+pn^2+...+pn^(an*B)].


每一行都是等比数列,等比求和然后mod9901就可以了,本来可以用逆元来求解的,但是这个题目好像好点问题所以使用的是首位相乘递归二分递归的解法。


#include<cstdio>
using namespace std;
typedef long long ll;
const ll MOD=9901;
ll A,B;

ll pow(ll p,ll n) //快速求幂 
{
	if(n==0)
	{
		return 1;
	}
	if(n&1)
	{
		return ( pow(p,n-1) * p ) % MOD;
	}
	ll ret=pow(p,n/2);
	return ( ret * ret ) % MOD;
}

ll sum(ll p,ll n)  //等比求和 
{
	if(n==0)
	{
		return 1;
	}
	if(n&1)
	{
		return ( (1+pow(p,n/2+1)) * sum(p,n/2) ) % MOD;
	}
	return ( (1+pow(p,n/2+1)) * sum(p,n/2-1) + pow(p,n/2) )% MOD;
} 

ll cal()
{
	ll ans=1;
	ll i,b;
	for(i=2;i*i<=A;i++)
	{
		b=0;
		while(A%i==0)
		{
			A/=i;
			b++;
		}
		ans=(ans*sum(i,b*B))%MOD;
	}
	
	if(A!=1)
	{
		ans=(ans*sum(A,B))%MOD;
	}
	return ans;
}
			
int main()
{
	while(~scanf("%lld%lld",&A,&B))
	{
		printf("%lld\n",cal());
	}
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值