leetcode笔记:Integer Break

这是一篇关于LeetCode中Integer Break问题的笔记,主要讨论如何通过动态规划找到一个正整数分解为多个正整数之和,以最大化它们的乘积。文章提供了题目描述、分析、解题代码及小结。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一. 题目描述

Given a positive integer n, break it into the sum of at least two positive integers and maximize the product of those integers. Return the maximum product you can get.

For example, given n = 2, return 1 (2 = 1 + 1); given n = 10, return 36 (10 = 3 + 3 + 4).

Note: you may assume that n is not less than 2.

二. 题目分析

题目大意是,给定给一个正整数n,将其分解成至少两个正整数的和,使得这些整数的积达到最大。返回最大的乘积。题目给出了两个案例。这里可以假设n不小于2

看一些规律:

2 = 1 + 1 -> 1 * 1 = 1
3 = 1 + 2 -> 1 * 2 = 2
4 = 2 + 2 -> 2 * 2 = 4
5 = 2 + 3 -> 2 * 3 = 6
6 = 3 + 3 -> 3 * 3 = 9
7 = 3 + 4 -> 3 * 4 = 12
8 = 2 + 3 + 3 -> 2 * 3 * 3 = 18
9 = 3 + 3 + 3 -> 3 * 3 * 3 = 27
10 = 3 + 3 + 4 -> 3 * 3 * 4 = 36
11 = 3 + 3 + 3 + 2 -> 3 * 3 * 3 * 2 = 54
12 = 3 + 3 + 3 + 3 -> 3 * 3 * 3 * 3 = 81 

除开n <= 4的情形,其他情况可用以下规律来描述,对于n的最大分拆乘积,记为f[n],则有:

f[n] = max(2 * f[n - 2], 3 * f[n - 3])

因此该题目可使用动态规划来完成。

三. 示例代码

class Solution {
public:
    int integerBreak(int n) {
        if (n <= 3) return n - 1;
        vector<int> dp(n + 1, 0);
        dp[2] = 2, dp[3] = 3;
        for (int i = 4; i <= n; ++i)
            dp[i] = max(2 * dp[i - 2], 3 * dp[i - 3]);
        return dp[n];
    }
};

四. 小结

寻找数学规律,该题可以通过多种方法解决。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值