噪声去除的中值滤波方法(Noise Reduction Using a Median Filter)

实验探讨了图像噪声去除中使用中值滤波器的方法。通过对椒盐噪声的模拟,展示3x3中值滤波在减少噪声方面的作用。多次中值滤波进一步提升了去噪效果,但边缘噪声处理不足。
摘要由CSDN通过智能技术生成


    要:本实验主要实现图像的加噪和去噪。模拟数字图像的噪声主要由于噪声广泛存在于图像的产生和传输过程。图像传感器的工作情况受各种因素的影响,如图像的获取中的环境条件和传感器自身的质量。图像在传输过程中主要由于所用的传输信道的干扰而受到噪声污染。在本次实验的加噪过程中使用的是椒盐噪声,有时也被称为脉冲噪声、散粒噪声或尖峰噪声。脉冲噪声主要表现在成像中的短暂停留中,例如错误的开关操作。去噪过程中采用了3 3中值滤波算法。中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值。该方法被广泛使用于各种随机噪声的去除。


一、技术论证


1 噪声模型

数字图像的噪声主要来源于图像的产生和传输过程。图像传感器的工作情况受各种因素的影响,如图像的获取中的环境条件和传感器自身的质量。图像在传输过程中主要由于所用的传输信道的干扰而受到噪声污染。


2 椒盐噪声及其概率密度函数

    首先定义椒盐噪声的概率密度函数:

    对于尺寸为 的输入图像,我们假设每个像素点变成胡椒噪声或盐粉噪声的概率分别为

    噪声脉冲可以是正的,也可以是负的。标定通常是图像数字化过程的一部分。因为脉冲干扰通常与图像信号的强度相比较大,因此在一幅图像中,脉冲噪声总是数字化为最大值(纯白或纯黑)。这样,通常假设ab为饱和值。从某种意义上看,在数字化图像中,它们等于所允许的最大值和最小值。对于一个8位图像,这意味着a=255(白),a=0(黑)。

    在实际处理中,可以生成一个与尺寸为 的输入图像相对应的矩阵,该矩阵中每个元素都为01之间的随机数,这样可以规定 两个区间内的元素相对应的输入图像的元素分别变成

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值