大数据发展的三个阶段:
阶段 |
时间 |
内容 |
第一阶段:萌芽期 |
上世纪90年代至本世纪初 |
随着数据挖掘理论和数据库技术的逐步成熟,一批商业智能工具和知识管理技术开始被应用,如数据仓库、专家系统、知识管理系统等。 |
第二阶段:成熟期 |
本世纪前十年 |
Web2.0应用迅猛发展,非结构化数据大量产生,传统处理方法难以应对,带动了大数据技术的快速突破,大数据解决方案逐渐走向成熟,形成了并行计算与分布式系统两大核心技术,谷歌的GFD和MapReduce等发数据技术受到追捧,Hadoop平台开始大行其道 |
第三阶段:大规模应用期 |
2010年以后 |
大数据应用渗透各行各业,数据驱动决策,信息社会智能化程度大幅提高 |
大数据--属性
1、数据量大
数据一直都在以每年50%的速度增长,也就是说每两年就增长一倍(大数据摩尔定律)
2、数据类型繁多
大数据是由结构化和非结构化数据组成的:
10%的结构化数据,存储在数据库中
90%的非结构化数据,它们与人类信息密切相关
3、处理速度快
4、价值密度低,商业价值高
大数据关键技术
大数据技术的不同层面及其功能
技术层面 |
功能 |
数据采集 |
利用ETL工具将分布的、异构数据源中的数据如关系数据、平面数据文件等,抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础;或者也可以把实时采集的数据作为流计算系统的输入,进行实时处理分析 |
数据存储和管理 |
利用分布式文件系统、数据仓库、关系数据库、NoSQL数据库、云数据库等,实现对结构化、半结构化和非结构化海量数据的存储和管理 |
数据处理与分析 |
利用分布式并行编程模型和计算框架,结合机器学习和数据挖掘算法,实现对海量数据的处理和分析;对分析结果进行可视化呈现,帮助人们更好地理解数据、分析数据 |
数据隐私和安全 |
在从大数据中挖掘潜在的巨大商业价值和学术价值的同时,构建隐私数据保护体系和数据安全体系,有效保护个人隐私和数据安全 |
大数据关键技术
大数据计算模式
大数据计算模式 |
解决问题 |
代表产品 |
批处理计算 |
针对大规模数据的批量处理 |
MapReduce、Spark等 |
流计算 |
针对流数据的实时计算 |
Storm、S4、Flume、Streams、Puma、DStream、Super Mario、银河流数据处理平台等 |
图计算 |
针对大规模图结构数据的处理 |
Pregel、GraphX、Giraph、PowerGraph、Hama、GoldenOrb等 |
查询分析计算 |
大规模数据的存储管理和查询分析 |
Dremel、Hive、Cassandra、Impala等 |