本原勾股数组

  简单的勾股数大家想必都知道,我国古代数学家发现的"勾广三,股修四,径隅五"。

                        3^2+4^2=5^2     

  满足这样性质的数(a^2+b^2=c^2)我们则称为勾股数,其满足毕达哥拉斯定理即勾股定理。

   下面为了简单起见,那么我们得表示方法则改为(a,b,c) <=>a^2+b^2=c^2 。

   我们还可以得到很多的勾股数数组

例如(5,12,13)  (8,15,17)   (7,24,25)

  (20,21,29)  (9,40,41)  (12,35,37)  

(11,60,61) (28,45,53)  (33,56,65) 


不知大家在阅读上面的数的时候有没有发现什么性质,答对了,那就是勾股数之内两两互素。

所以呢如果在勾股数组里,gcd(a,b)=gcd(a,c)=gcd(b,c)=1,(gcd为两个数的最大公约数)那么这个称为本原勾股数组(简写为ppt)。


那么我们现在给出本原勾股数组的一个定理并证明之

定理:每个本原勾股数组(a,b,c)(其中a为奇数,b为偶数)都会有如下公式得出

1. a=st。

2. b=(s^2-t^2)/2。

3. c=(s^2+t^2)/2。

其中s>t>=1 是任意没有公因数的奇数。


下面给出我自己的简易证明:

易证a,b必一奇一偶,则显然的c为奇数。

这个时候a,b的书序可以任意颠倒,

所以取(a&1==1)和(b&1==0)

则有a^2=c^2-b^2,所以a^2=(c-b)(c+b)

易得gcd[(c-b),(c+b)]=1。

                                       证明:假设gcd[(c-b),(c+b)]=d

则d|(c-b) , d|(c+b)

所以d|((c-b)+(c+b))  d|2c

  同理d|2b

又gcd(b,c)=1 所以d=1 or 2

  又d|(c-b)*(c+b)=a^2,a为奇数

  所以d|a,所以d=1;

所以gcd[(c-b),(c+b)]=1。

又a^2=(c-b)*(c+b)

则(c-b)和(c+b)为平方数(用素数分解法很容易得出这个结论)

所以c+b=s^2  c-b=t^2

所以c=(s^2+t^2)/2    b=(s^2-t^2)/2

a=sqrt(s^2*t^2)=st;

所以得出了定理!


第一次写博客,难免有疏漏之处,望指出!

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值