(1)勾股数组

勾股数组

在国外又称毕达哥拉斯定理,初中都学过一个直角三角形的两个直角边的平方和等于斜边长的平分。
公式:

a 2 + b 2 = c 2 a^{2}+b^{2}=c^{2} a2+b2=c2

是否有无穷个勾股数组

我们已经找到了一些勾股数组例如 ( 3 , 4 , 5 ) (3,4,5) 345。我们将各个勾股数组设为 ( a , b , c ) (a,b,c) abc,将每个数都乘上个d,那么 ( d a , d b , d c ) (da,db,dc) dadbdc也是一个数组。
因为

( d a ) 2 + ( d b ) 2 = d 2 ( a 2 + b 2 ) = d 2 c 2 = ( d c ) 2 (da)^{2}+(db)^{2}=d^{2}(a^{2}+b^{2})=d^{2}c^{2}=(dc)^{2} (da)2+(db)2=d2(a2+b2)=d2c2=(dc)2

当然这些新的勾股数组并不是很令人感兴趣。所以我们转而关注没有(大于1)公因数的三元组。

本原勾股数组

本原勾股数组(简写PPT)是一个三元组 ( a , b , c ) (a,b,c) (a,b,c),其中a,b,c没有公因数,且满足: a 2 + b 2 = c 2 a^{2}+b^{2}=c^{2} a2+b2=c2
下面是得到的一些本原勾股数组

( 3 , 4 , 5 ) (3,4,5) (3,4,5) ( 5 , 12 , 13 ) (5,12,13) (5,12,13) ( 8 , 15 , 17 ) (8,15,17) (8,15,17) ( 7 , 24 , 35 ) (7,24,35) (7,24,35)
( 20 , 21 , 29 ) (20,21,29) (20,21,29) ( 9 , 40 , 41 ) (9,40,41) (9,40,41) ( 12 , 35 , 37 ) (12,35,37) (12,35,37) ( 11 , 60 , 61 ) (11,60,61) (11,60,61)
( 28 , 45 , 53 ) (28,45,53) (28,45,53) ( 33 , 56 , 65 ) (33,56,65) (33,56,65) ( 16 , 63 , 65 ) (16,63,65) (16,63,65)

从这个表中我们容易得出几个结论,例如:似乎a,b的奇偶性不同且c总是奇数。
证明如下:
首先,如果a,b都为偶数,显然c也为偶数,这就意味着a,b,c有公因数2,这就违反了本原勾股数组的定义。
其次,如果a,b都为奇数,那么c也为必为偶数,那么一定存在x,y,z使得

a = 2 x + 1 , b = 2 y + 1 , c = 2 z a=2x+1 \hspace{0.3cm},b=2y+1\hspace{0.3cm} ,c=2z a=2x+1,b=2y+1,c=2z

将其带入公式 a 2 + b 2 = c 2 a^{2}+b^{2}=c^{2} a2+b2=c2

( 2 x + 1 ) 2 + ( 2 y + 1 ) 2 = ( 2 z ) 2 (2x+1)^{2}+(2y+1)^{2}=(2z)^{2} (2x+1)2+(2y+1)2=(2z)2
4 x 2 + 4 x + 4 y 2 + 4 y + 2 = 4 z 2 4x^{2}+4x+4y^{2}+4y+2=4z^{2} 4x2+4x+4y2+4y+2=4z2

两边除以2得
2 x 2 + 2 x + 2 y 2 + 2 y + 1 = 2 z 2 2x^{2}+2x+2y^{2}+2y+1=2z^{2} 2x2+2x+2y2+2y+1=2z2
最后一个公式可以看到左边是一个奇数,右边是一个偶数,这显然是不合理的,说明我们的假设是错的,即a,b不可能是奇数。

综上可知a,b的奇偶性不同,在由 a 2 + b 2 = c 2 a^{2}+b^{2}=c^{2} a2+b2=c2可知c为奇数。
考虑到a,b的对称性可以将问题转化为求解方程

a 2 + b 2 = c 2 , a^{2}+b^{2}=c^{2}, a2+b2=c2, a是奇数,b是偶数,c是奇数,a,b,c没有公因数。

的所有的自然数解,我们使用的工具是因数分解与整除法。

勾股数组定理

观察可知:如果(a,b,c)是本原勾股数组,则可进行因数分解。

a 2 = c 2 − b 2 = ( c − b ) ( c + b ) a^{2}=c^{2}-b^{2}=(c-b)(c+b) a2=c2b2=(cb)(c+b)

下面是一些例子:

3 2 3^{2} 32 5 2 − 4 2 5^{2}-4^{2} 5242 ( 5 − 4 ) ( 5 + 4 ) (5-4)(5+4) (54)(5+4) 1 ∗ 9 1*9 19
1 5 2 15^{2} 152 1 7 2 − 8 2 17^{2}-8^{2} 17282 ( 17 − 8 ) ( 17 + 8 ) (17-8)(17+8) (178)(17+8) 9 ∗ 25 9*25 925
3 5 2 35^{2} 352 3 7 2 − 1 2 2 37^{2}-12^{2} 372122 ( 37 − 12 ) ( 37 + 12 ) (37-12)(37+12) (3712)(37+12) 25 ∗ 49 25*49 2549

观察可知:似乎c-b与c+b本身总是平方数
怎么证明呢?我们可以利用另一个观察——c-b与c+b似乎没有公因数。
我们首先假设d为c-b与c+b的公因数,那么d可以整除c-b与c+b,由于:

( c + b ) − ( c − b ) = 2 b ( c + b ) + ( c − b ) = 2 c (c+b)-(c-b)=2b\hspace{2cm}(c+b)+(c-b)=2c (c+b)(cb)=2b(c+b)+(cb)=2c

因此d也可以整除2b与2c,但b与c因为定义所以互素。从而d只能等于1,2。又因为d也可以整除 ( c − b ) ( c + b ) = a 2 (c-b)(c+b)=a^{2} (cb)(c+b)=a2且a为奇数,所以d必等于1。所以(c-b)与(c+b)没有公因数。
现在我们知道c-b与c+b没有公因数而且由于(c+b)(c-b)=a2所以两个数的积是平方数,这种情况只有两个数都为平方数时才能出现,记:

c + b = s 2 c − b = t 2 c+b=s^{2}\hspace{2cm}c-b=t^{2} c+b=s2cb=t2

其中 s > t ≥ 1 s>t\geq1 s>t1是没有公因数的奇数,解这两个关于b和c的方程:

c = s 2 + t 2 2 b = s 2 − t 2 2 c=\frac{s^{2}+t^{2}}{2}\qquad\hspace{1cm}b=\frac{s^{2}-t^{2}}{2}\qquad c=2s2+t2b=2s2t2

于是

a = ( c − b ) ( c + b ) = s t a=\sqrt{(c-b)(c+b)}=st a=(cb)(c+b) =st

到这里我们已经接近完成第一个证明。
勾股数组定理
每个本原勾股数组都可以从如下公式得出:

a = s t c = s 2 + t 2 2 b = s 2 − t 2 2 a=st\hspace{2cm}c=\frac{s^{2}+t^{2}}{2}\qquad\hspace{1cm}b=\frac{s^{2}-t^{2}}{2}\qquad a=stc=2s2+t2b=2s2t2

其中 s > t ≥ 1 s>t\geq1 s>t1是任意没有公因数的奇数。

接下来证明所有所有满足定义的s,t得出的三元组都是本原勾股数组。
先通过代数运算证明这些三元组都是勾股数组。

( s t ) 2 + ( s 2 − t 2 2 ) 2 = 略 = ( s 2 + t 2 2 ) 2 (st)^{2}+(\frac{s^{2}-t^{2}}{2})^{2}=略=(\frac{s^{2}+t^{2}}{2})^{2} (st)2+(2s2t2)2==(2s2+t2)2

我们还需要证明 ( s t ) 2 , s 2 − t 2 2 , s 2 + t 2 2 (st)^{2},\frac{s^{2}-t^{2}}{2},\frac{s^{2}+t^{2}}{2} (st)22s2t2,2s2+t2没有公因数,利用素数的性质可以证明这个结论,留到以后再证。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值