python使用gensim进行文本相似度计算

前提知识:

阮一峰:TF-IDF与余弦相似性的应用(一):自动提取关键词

              TF-IDF与余弦相似性的应用(二):找出相似文章


本文章根据 在路上吗 翻译官方教程,使用tfidf计算文本相似度

翻译教程地址:http://blog.csdn.net/questionfish/article/category/5610303


首先安装gensim,具体可百度。导入gensim,并设置日志

from gensim import corpora, models, similarities
import logging
from collections import defaultdict  
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)

准备数据:现在有9篇文档,将9篇文档放入到list中

#文档
documents = ["Human machine interface for lab abc computer applications",
"A survey of user opinion of computer system response time", 
"The EPS user interface management system", 
"System and human system engineering testing of EPS",
"Relation of user perceived response time to error measurement",
"The generation of random binary unordered trees",  
"The intersection graph of paths in trees",  
"Graph minors IV Widths of trees and well quasi ordering",  
"Graph minors A survey"]

1、对文档进行分词,此处文档是英文,所以可以直接根据空格分割,如果是中文,可使用一些中文分词工具对文档进行分词。

(1)首先设置停用词,此处只是为了测试,简单的设置一下,将for   a    of    the   and   to   in设为停用词

(2)遍历文档,对每个文档分词,并对分词过滤,如果单词属于停用词,则舍弃

#1.分词,去除停用词
stoplist=set('for a of the and to in'.split())
texts=[[word for word in document.lower().split() if word not in stoplist] for document in documents]#遍历文档并分词
如果和我一样是Python初学者,看到
[[word for word in document.lower().split() if word not in stoplist] for document in documents]

可能会有些陌生,这里可以先看一个简单的例子,想详细了解可以去搜Python链表推导式。

num=[1,2,3]  
myvec=[[x,x*2] for x in num] 
#得到[[1, 2], [2, 4], [3, 6]]
http://fortianwei.iteye.com/blog/356367

打印分词后的结果,每篇文档都已经被分词:

print(texts)
[['human', 'machine', 'interface', 'lab', 'abc', 'computer', 'applications'], ['survey', 'user', 'opinion', 'computer', 'system', 'response', 'time'],
['eps', 'user', 'interface', 'management', 'system'], ['system', 'human', 'system', 'engineering', 'testing', 'eps'], ['relation', 'user', 'perceived
', 'response', 'time', 'error', 'measurement'], ['generation', 'random', 'binary', 'unordered', 'trees'], ['intersection', 'graph', 'paths', 'trees'],
['graph', 'minors', 'iv', 'widths', 'trees', 'well', 'quasi', 'ordering'], ['graph', 'minors', 'survey']]

2、计算每个词出现的频率

(1)遍历上一步得到的分词后的结果集texts,然后计算每个单词出现的频率

(2)找出频率大于1的词,出现次数小于1的单词舍弃(实际情况中可根据需求确定)

#2.计算词频
frequency = defaultdict(int) #构建一个字典对象
#遍历分词后的结果集,计算每个词出现的频率
for text in texts:
	for token in text:
		frequency[token]+=1
#选择频率大于1的词
texts=[[token for token in text if frequency[token]>1] for text in texts]
打印结果,过滤出出现频率大于1的单词:

print(texts)
[['human', 'interface', 'computer'], ['survey', 'user', 'computer', 'system', 'response', 'time'], ['eps', 'user', 'interface', 'system'], ['system',
'human', 'system', 'eps'], ['user', 'response', 'time'], ['trees'], ['graph', 'trees'], ['graph', 'minors', 'trees'], ['graph', 'minors', 'survey']]

3、通过corpora创建字典

以第一篇文档为例

[human,interface,computer] 建立字典→

{'human':1,'interface':2,'computer':3},其中key为单词,value为单词的编号(注意:实际编号不一定是1 2 3,这里只是为了举例)

#3.创建字典(单词与编号之间的映射)
dictionary=corpora.Dictionary(texts)
#print(dictionary)
#Dictionary(12 unique tokens: ['time', 'computer', 'graph', 'minors', 'trees']...)
#打印字典,key为单词,value为单词的编号
print(dictionary.token2id)
#{'human': 0, 'interface': 1, 'computer': 2, 'survey': 3, 'user': 4, 'system': 5, 'response': 6, 'time': 7, 'eps': 8, 'trees': 9, 'graph': 10, 'minors': 11}
从打印的字典结果中,可以看出为每个单词都建立了一个编号,总共有12个单词


4、处理将要比较的文档

(1)首先还是对文档分词

(2)然后根据上一步建立的字典dictionary将文档分词后的结果转为向量,使用一种名为词袋的表示方法

#4.将要比较的文档转换为向量(词袋表示方法)
#要比较的文档
new_doc = "Human computer interaction"
#将文档分词并使用doc2bow方法对每个不同单词的词频进行了统计,并将单词转换为其编号,然后以稀疏向量的形式返回结果
new_vec = dictionary.doc2bow(new_doc.lower().split())
# print(new_vec)
#[[(0, 1), (2, 1)]
首先文档分词后的结果为【human,computer,interaction】,从上一步的字典集中找出human单词的编号为0,本文档出现的次数为1,computer单词编号为2,本文档中出现次数为1,interaction在字典集中没有出现,因此没有对应的信息,最后得到文档的词袋表示(向量表示)
[[(0, 1), (2, 1)]


5、建立语料库

使用同样的方法,根据字典集将9篇文档的分词结果转为向量表示,从打印结果中可以看到9篇文档都被转换为了向量表示方法,此时得到一个语料库corpus

#5.建立语料库
#将每一篇文档转换为向量
corpus = [dictionary.doc2bow(text) for text in texts]
print(corpus)
#[[[(0, 1), (1, 1), (2, 1)], [(2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1)], [(1, 1), (4, 1), (5, 1), (8, 1)], [(0, 1), (5, 2), (8, 1)], [(4, 1), (6, 1), (7, 1)], [(9, 1)], [(9, 1), (10, 1)], [(9, 1), (10, 1), (11, 1)], [(3, 1), (10, 1), (11, 1)]]

6、初始化模型

(1)使用上一步得到语料库建立一个tfidf模型,利用此模型可以将文档的向量表示转换为tfidf表示方法

#6.初始化模型
# 初始化一个tfidf模型,可以用它来转换向量(词袋整数计数)表示方法为新的表示方法(Tfidf 实数权重)
tfidf = models.TfidfModel(corpus)
#测试
test_doc_bow = [(0, 1), (1, 1)]
print(tfidf[test_doc_bow])
#[(0, 0.7071067811865476), (1, 0.7071067811865476)]
test_doc_bow为测试数据,假如有一篇文档的向量表示为[(0,1),(1,1)],也就是该篇文档中包含两个单词,在字典集中一个编号为1,一个编号为0,两个单词在文档中都出现了一次,现在使用tfidf模型转换,转换后的结果为

[(0, 0.7071067811865476), (1, 0.7071067811865476)]

(0,0.7071067811865476)

  第一个数字0还表示单词的编号,第二个数字0.7071067811865476表示该单词的tfidf值


(2)用同样的办法,将整个语料库转为tfidf表示

#将整个语料库转为tfidf表示方法
corpus_tfidf = tfidf[corpus]
for doc in corpus_tfidf:
	print(doc)

转换后的语料库:

[(0, 0.5773502691896257), (1, 0.5773502691896257), (2, 0.5773502691896257)]
[(2, 0.44424552527467476), (3, 0.44424552527467476), (4, 0.3244870206138555), (5, 0.3244870206138555), (6, 0.44424552527467476), (7, 0.44424552527467476)]
[(1, 0.5710059809418182), (4, 0.4170757362022777), (5, 0.4170757362022777), (8, 0.5710059809418182)]
[(0, 0.49182558987264147), (5, 0.7184811607083769), (8, 0.49182558987264147)]
[(4, 0.45889394536615247), (6, 0.6282580468670046), (7, 0.6282580468670046)]
[(9, 1.0)]
[(9, 0.7071067811865475), (10, 0.7071067811865475)]
[(9, 0.5080429008916749), (10, 0.5080429008916749), (11, 0.695546419520037)]
[(3, 0.6282580468670046), (10, 0.45889394536615247), (11, 0.6282580468670046)]


7、创建索引

使用上一步得到的带有tfidf值的语料库建立索引

#7.创建索引
index = similarities.MatrixSimilarity(corpus_tfidf)

8、相似度计算

#8.相似度计算
new_vec_tfidf=tfidf[new_vec]#将要比较文档转换为tfidf表示方法
print(new_vec_tfidf)
#[(0, 0.7071067811865476), (2, 0.7071067811865476)]

#计算要比较的文档与语料库中每篇文档的相似度
sims = index[new_vec_tfidf]
print(sims)
#[ 0.81649655  0.31412902  0.          0.34777319  0.          0.          0.
#  0.          0.        ]
最后打印的结果是输入的测试文档与语料库中9篇文档通过余弦相似度计算得到的值,可以看出和第一篇文档的余弦值最高,为0.81649655,所以和第一篇文档最为相似

测试文档:Human computer interaction

第一篇文档:Human machine interface for lab abc computer applications

完整代码:

# -*- coding: utf-8 -*-
from gensim import corpora, models, similarities
import logging
from collections import defaultdict  
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)

#文档
documents = ["Human machine interface for lab abc computer applications",
"A survey of user opinion of computer system response time", 
"The EPS user interface management system", 
"System and human system engineering testing of EPS",
"Relation of user perceived response time to error measurement",
"The generation of random binary unordered trees",  
"The intersection graph of paths in trees",  
"Graph minors IV Widths of trees and well quasi ordering",  
"Graph minors A survey"]

#1.分词,去除停用词
stoplist=set('for a of the and to in'.split())
texts=[[word for word in document.lower().split() if word not in stoplist] for document in documents]
print('-----------1----------')
print(texts)
#[['human', 'machine', 'interface', 'lab', 'abc', 'computer', 'applications'], ['survey', 'user', 'opinion', 'computer', 'system', 'response', 'time'],
#['eps', 'user', 'interface', 'management', 'system'], ['system', 'human', 'system', 'engineering', 'testing', 'eps'], ['relation', 'user', 'perceived
#', 'response', 'time', 'error', 'measurement'], ['generation', 'random', 'binary', 'unordered', 'trees'], ['intersection', 'graph', 'paths', 'trees'],
#['graph', 'minors', 'iv', 'widths', 'trees', 'well', 'quasi', 'ordering'], ['graph', 'minors', 'survey']]

#2.计算词频
frequency = defaultdict(int) #构建一个字典对象
#遍历分词后的结果集,计算每个词出现的频率
for text in texts:
	for token in text:
		frequency[token]+=1
#选择频率大于1的词
texts=[[token for token in text if frequency[token]>1] for text in texts]
print('-----------2----------')
print(texts)
#[['human', 'interface', 'computer'], ['survey', 'user', 'computer', 'system', 'response', 'time'], ['eps', 'user', 'interface', 'system'], ['system',
#'human', 'system', 'eps'], ['user', 'response', 'time'], ['trees'], ['graph', 'trees'], ['graph', 'minors', 'trees'], ['graph', 'minors', 'survey']]

#3.创建字典(单词与编号之间的映射)
dictionary=corpora.Dictionary(texts)
#print(dictionary)
#Dictionary(12 unique tokens: ['time', 'computer', 'graph', 'minors', 'trees']...)
#打印字典,key为单词,value为单词的编号
print('-----------3----------')
print(dictionary.token2id)
#{'human': 0, 'interface': 1, 'computer': 2, 'survey': 3, 'user': 4, 'system': 5, 'response': 6, 'time': 7, 'eps': 8, 'trees': 9, 'graph': 10, 'minors': 11}

#4.将要比较的文档转换为向量(词袋表示方法)
#要比较的文档
new_doc = "Human computer interaction"
#将文档分词并使用doc2bow方法对每个不同单词的词频进行了统计,并将单词转换为其编号,然后以稀疏向量的形式返回结果
new_vec = dictionary.doc2bow(new_doc.lower().split())
print('-----------4----------')
print(new_vec)
#[[(0, 1), (2, 1)]

#5.建立语料库
#将每一篇文档转换为向量
corpus = [dictionary.doc2bow(text) for text in texts]
print('-----------5----------')
print(corpus)
#[[[(0, 1), (1, 1), (2, 1)], [(2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1)], [(1, 1), (4, 1), (5, 1), (8, 1)], [(0, 1), (5, 2), (8, 1)], [(4, 1), (6, 1), (7, 1)], [(9, 1)], [(9, 1), (10, 1)], [(9, 1), (10, 1), (11, 1)], [(3, 1), (10, 1), (11, 1)]]

#6.初始化模型
# 初始化一个tfidf模型,可以用它来转换向量(词袋整数计数)表示方法为新的表示方法(Tfidf 实数权重)
tfidf = models.TfidfModel(corpus)
#测试
test_doc_bow = [(0, 1), (1, 1)]
print('-----------6----------')
print(tfidf[test_doc_bow])
#[(0, 0.7071067811865476), (1, 0.7071067811865476)]

print('-----------7----------')
#将整个语料库转为tfidf表示方法
corpus_tfidf = tfidf[corpus]
for doc in corpus_tfidf:
	print(doc)

#7.创建索引
index = similarities.MatrixSimilarity(corpus_tfidf)

print('-----------8----------')
#8.相似度计算
new_vec_tfidf=tfidf[new_vec]#将要比较文档转换为tfidf表示方法
print(new_vec_tfidf)
#[(0, 0.7071067811865476), (2, 0.7071067811865476)]
print('-----------9----------')
#计算要比较的文档与语料库中每篇文档的相似度
sims = index[new_vec_tfidf]
print(sims)
#[ 0.81649655  0.31412902  0.          0.34777319  0.          0.          0.
#  0.          0.        ]


  • 6
    点赞
  • 54
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值