(1) 为啥要用HahSet?
假如我们现在想要在一大堆数据中查找X数据。LinkedList的数据结构就不说了,查找效率低的可怕。ArrayList哪,如果我们不知道X的位置序号,还是一样要全部遍历一次直到查到结果,效率一样可怕。HashSet天生就是为了提高查找效率的。
(2) hashCode 散列码
散列码是由对象导出的一个整数值。在Object中有一个hashCode方法来得到散列码。基本上,每一个对象都有一个默认的散列码,其值就是对象的内存地址。但也有一些对象的散列码不同,比如String对象,它的散列码是对内容的计算结果:
Java代码:
//String对象的散列码计算
String str="hello";
int hash=0;
for(int i=0;i<length();i++)
hash=31*hash+charAt(i);
那么下面散列码的结果不同也就好解释了。s和t都还是String对象,散列码由内容获得,结果一样。sb和tb是StringBuffer对象,自身没有hashCode方法,只能继承Object的默认方法,散列码是对象地址,当然不一样了。
Java代码:
String s=new String("OK");//散列码: 3030
String t="Ok"; /散列码: 3030
StringBuffer sb=new StringBuffer(s); //散列码:20526976
StringBuffer tb=new StringBuffer(t); //散列码:20527144
(3) HashSet 散列表的内部结构
HashSet是个链表数组。每一个数组元素就是一个列表,我们称为散列表元 。
(4) HashSet 如何add机制
假如我们有一个数据(散列码76268),而此时的HashSet有128个散列单元,那么这个数据将有可能插入到数组的第108个链表中(76268%128=108)。但这只是有可能,如果在第108号链表中发现有一个老数据与新数据equals()=true的话,这个新数据将被视为已经加入,而不再重复丢入链表。
那么数据的散列码我知道,但HashSet的散列单元大小如何指定那?
Java默认的散列单元大小全部都是2的幂,初始值为16(2的4次幂)。假如16条链表中的75%链接有数据的时候,则认为加载因子达到默认的0.75。HahSet开始重新散列,也就是将原来的散列结构全部抛弃,重新开辟一个散列单元大小为32(2的5次幂)的散列结果,并重新计算各个数据的存储位置。以此类推下去.....
(5) 为什么HashSet查找效率提高了。
知道了HashSet的add机制后,查找的道理一样。直接根据数据的散列码和散列表的数组大小计算除余后,就得到了所在数组的位置,然后再查找链表中是否有这个数据即可。
查找的代价也就是在链表中,但是真正一条链表中的数据很少,有的甚至没有。几乎没有什么迭代的代价可言了。所以散列表的查找效率建立在散列单元所指向的链表中的数据要少 。
(6) hashCode方法必须与equals方法必须兼容
如果我们自己定义了一个类,想对这个类的大量对象组织成散列表结构便于查找。有一点一定要注意:就是hashCode方法必须与equals方法向兼容。
Java代码:
//hashCode与equals方法的兼容
public class Employee{
public int id;
public String name="";
//相同id对象具有相同散列码
public int hashCode(){
return id;
}
//equals必须比较id
public boolean equals(Employee x){
if(this.id==x.id) return true;
else return false;
}
}
为什么要这样,因为HashSet不允许相同元素(equals==ture)同时存在在结构中。假如employeeX(1111,“张三”)和employee(1111,"李四"),而Employee.equals比较的是name。这样的话,employeeX和employeeY的equals不相等。它们会根据相同的散列码1111加入到同一个散列单元所指向的列表中。这种情况多了,链表的数据将很庞大,散列冲突将非常严重,查找效率会大幅度的降低。
(6) 总结一下
1、HashSet不能重复存储equals相同的数据 。原因就是equals相同,数据的散列码也就相同(hashCode必须和equals兼容)。大量相同的数据将存放在同一个散列单元所指向的链表中,造成严重的散列冲突,对查找效率是灾难性的。
2、HashSet的存储是无序的 ,没有前后关系,他并不是线性结构的集合。
3、hashCode必须和equals必须兼容, 这也是为了第1点。