关闭

[置顶] “ML学分计划”说明书

计划的由来 我们是一群对机器学习感兴趣的小伙伴,对于神奇的机器学习经常有“一探究竟”的冲动,却因为孤身一人学习的寂寞、亦或繁忙考试工作之余的小小拖延症,而没有持续这份对知识的渴求和热情。 由于深感类似情况的小伙伴之多,我们希望建立一个“ML学分计划”——机器学习的学习和分享计划——来帮助我们一起更高效地学习、更集中地整理分享我们的知识和经验。因为我们也深信”证明自己真的透彻理解一个知识,最好的方法,...
阅读(4508) 评论(3)

计算广告小窥[下]要啥自行车!

一是总结自己已掌握的知识,二是降低同学们的学习成本。本人能力有限,更缺乏实践经验,文章内容多为书籍和论文的读后感,若有不当或者错误之处,还望各位同学指出,我定悉心求教。在此,向编写《计算广告》的刘鹏和王超两位老师致谢,向各位paper作者致谢。...
阅读(2467) 评论(1)

深度学习与自然语言处理(8)_斯坦福cs224d RNN,MV-RNN与RNTN

这篇课堂笔记将介绍不同类型的RNN(递归神经网络),并介绍它在NLP领域的应用和优势。...
阅读(6073) 评论(3)

深度学习与自然语言处理(7)_斯坦福cs224d 语言模型,RNN,LSTM与GRU

本文为斯坦福大学CS224d课程的中文版内容笔记,已得到斯坦福大学课程@Richard Socher教授的授权翻译与发表...
阅读(8252) 评论(3)

深度学习与自然语言处理(6)_斯坦福cs224d 一起来学Tensorflow part1

Tensorflow是Google提供资金研发的,比较全,支持分布式,同时有Google这样的亲爹在,我猜资源倾斜也是迟早的事情。今天的重点自然是Tensorflow,其他的框架也都很好,大家可以自行尝试。...
阅读(13993) 评论(0)

深度学习与自然语言处理(5)_斯坦福cs224d 大作业测验2与解答

原本打算把作业和答案做个编排,一起发出来给大家看,无奈代码量有点大,贴上来以后文章篇幅过长,于是乎题目的代码解答放到了百度云盘,欢迎自行下载和运行或者调整。...
阅读(16589) 评论(0)

深度学习与自然语言处理(4)_斯坦福cs224d 大作业测验1与解答

前面一个接一个的Lecture,看得老衲自己也是一脸懵逼,不过你以为你做一个安安静静的美男子(总感觉有勇气做deep learning的女生也是一条汉纸)就能在Stanford这样的学校顺利毕业啦?图样图森破,除掉极高的内容学习梯度,这种顶尖大学的作业和考试一样会让你突(tong)飞(bu)猛(yu)进(sheng)。...
阅读(17863) 评论(4)

深度学习与自然语言处理(3)_斯坦福cs224d Lecture 3

这是斯坦福CS224d深度学习与自然语言处理的第3课,这节课先会介绍单层和多层神经网络和它们在机器学习分类任务中的应用, 接着介绍如何利用反向传播算法来训练这些神经网络模型(在这个方法中,我们将利用偏导数的链式法则来层层更新神经元参数)。在给出神经网络以及这些算法严谨的数学定义后,介绍了训练神经网络的一些实用的技巧和窍门。...
阅读(13443) 评论(0)

斯坦福cs224d(深度学习在自然语言处理上的应用)Lecture 2

这个课堂笔记我们将会对词向量(也就是词嵌入)的内部任务评价和外部任务评价方法进行讨论。主要的内容是单词类比(word analogies)技术,我们会把它当做内部任务评价的技术并展示其相关示例,它会在词向量的调谐(tune)中发挥重要作用。我们还会讨论如何训练模型的权重/参数,并关注用来进行外部任务评价的词向量。最后,我们会简单地介绍人工神经网络,它在自然语言处理中表现极好。...
阅读(14987) 评论(3)

斯坦福大学CS224d基础1:线性代数知识

本文为斯坦福CS229的内容,也是CS224d课程的背景数学知识。概括了在机器学习和深度学习中用到的大部分线性代数知识。为了便于大家查漏补缺,这里根据英文版本整理了一个中文版本。...
阅读(17715) 评论(2)

深度学习与自然语言处理(1)_斯坦福cs224d Lecture 1

本文为斯坦福大学CS224d课程的中文版内容笔记,已得到斯坦福大学课程@Richard Socher教授的授权翻译与发表...
阅读(27711) 评论(5)

能模仿韩寒小四写作的神奇循环神经网络

有这么一类神经网络,能够在NLP上发挥巨大的作用,处理从语言模型(language model)到双语翻译,到文本生成,甚至到代码风格模仿的问题。这就是我们今天要介绍的循环神经网络。...
阅读(31956) 评论(2)

机器学习系列(9)_机器学习算法一览(附Python和R代码)

写这篇文章的目的,就是希望它可以让有志于从事数据科学和机器学习的诸位在学习算法的路上少走些路。我会在文章中举例一些机器学习的问题,你们也可以在思考解决这些问题的过程中得到启发。我也会写下对于各种机器学习算法的一些个人理解,并且提供R和Python的执行代码。读完这篇文章,读者们至少可以行动起来亲手试试写一个机器学习的程序。...
阅读(25476) 评论(4)

深度学习与计算机视觉(11)_基于deep learning的快速图像检索系统

本系统是基于CVPR2015的论文《Deep Learning of Binary Hash Codes for Fast Image Retrieval》实现的海量数据下的基于内容图片检索系统,250w图片下,对于给定图片,检索top 1000相似时间约为1s,其基本背景和原理会在下文提到。...
阅读(9643) 评论(5)

机器学习系列(8)_读《Nature》论文,看AlphaGo养成

博主是围棋小白,下棋规则都记不清楚,也没有设计过棋类AI程序。这篇文章主要是阅读《Nature》论文及关于AlphaGo的相关文章的学习心得。 本文的主要目的是增进分享,交流学习,方便初学者了解AlphaGo中的算法,以及一些机器学习中的常见思路。真正的工程实现过程远比本文介绍得复杂。 本文更多是启发式地进行阐述与分析,包括一些作者结合自己的理解进行的简化处理。...
阅读(22194) 评论(11)

机器学习系列(7)_机器学习路线图(附资料)

1. 引言 也许你和这个叫『机器学习』的家伙一点也不熟,但是你举起iphone手机拍照的时候,早已习惯它帮你框出人脸;也自然而言点开今日头条推给你的新闻;也习惯逛淘宝点了找相似之后货比三家;亦或喜闻乐见微软的年龄识别网站结果刷爆朋友圈。恩,这些功能的核心算法就是机器学习领域的内容。 机器学习研究的是计算机怎样模拟人类的学习行为,以获取新的知识或技能,并重新组织已有的知识结构使之不断改善自身。而...
阅读(24689) 评论(19)
41条 共3页1 2 3 下一页 尾页
    个人资料
    • 访问:560433次
    • 积分:3792
    • 等级:
    • 排名:第8957名
    • 原创:41篇
    • 转载:0篇
    • 译文:0篇
    • 评论:201条
    个人介绍与联系方式

    龙心尘

    『五道口计算机学院』毕业,有几年机器学习/数据挖掘工作经验。某厂打杂,做过用户画像、智能营销策略、网络安全机器学习、NLP等项目。欢迎联系和交流。

    EMAIL: johnnygong.ml@gmail.com 

    QQ: 3253950332

    数据科学沙龙群: 169492443(不定期在线分享相关知识经验)

    机器学习交流群: 439183906(已满),373038809(已满),194141072

    专业工作或者研究人员分享群: 472059892

    最新评论