龙心尘

专注机器学习与数据挖掘

排序:
默认
按更新时间
按访问量

能模仿韩寒小四写作的神奇循环神经网络

作者:寒小阳 && 龙心尘 时间:2016年4月 出处: http://blog.csdn.net/han_xiaoyang/article/details/51253274 http://blog.csdn.net/longxinchen...

2016-04-26 20:07:41

阅读数:32754

评论数:2

机器学习系列(8)_读《Nature》论文,看AlphaGo养成

博主是围棋小白,下棋规则都记不清楚,也没有设计过棋类AI程序。这篇文章主要是阅读《Nature》论文及关于AlphaGo的相关文章的学习心得。 本文的主要目的是增进分享,交流学习,方便初学者了解AlphaGo中的算法,以及一些机器学习中的常见思路。真正的工程实现过程远比本文介绍得复杂。 本文更多是...

2016-03-16 11:23:45

阅读数:24149

评论数:11

“ML学分计划”说明书

计划的由来 我们是一群对机器学习感兴趣的小伙伴,对于神奇的机器学习经常有“一探究竟”的冲动,却因为孤身一人学习的寂寞、亦或繁忙考试工作之余的小小拖延症,而没有持续这份对知识的渴求和热情。 由于深感类似情况的小伙伴之多,我们希望建立一个“ML学分计划”——机器学习的学习和分享计划——来帮助我们一起更...

2016-02-16 12:29:45

阅读数:4939

评论数:4

机器学习系列(6)_从白富美相亲看特征预处理与选择(下)

本文讲了一下特征预处理的完整流程,接下来用贝叶斯方法筛选特征,并进行判断。最后探讨了一下数据与算法的关系和机器学习的局限性。

2016-01-10 21:19:42

阅读数:24518

评论数:11

机器学习系列(5)_从白富美相亲看特征选择与预处理(上)

本文中主要讲了一些特征有效性分析的方法,包括用互信息,平均互信息,条件熵,后验概率,逻辑回归权重等方法对特征与标签的相关性进行了评估。有了这些评估做基础,可以筛选出显著的特征,并对对不显著的特征进行分析、拆分和重组,最终形成新的特征并反复迭代。本文略过了一些特征预处理的方法,并对特征有效性评估的阐...

2016-01-06 21:00:52

阅读数:16452

评论数:17

手把手入门神经网络系列(1)_从初等数学的角度初探神经网络

为了解释这个问题,我们呈现了神经网络在分类问题上优于逻辑回归的地方——它几乎可以实现任意复杂的分类边界,无误差地实现训练集上的分类。 然而,这是有代价的:由于其强大的拟合能力,极容易产生过拟合。为了降低过拟合,我们介绍了一种降低过拟合的思路。 在这个过程中,我们尽量解释神经网络每一步操作对应的现实...

2015-11-28 11:57:38

阅读数:20189

评论数:12

机器学习系列(2)_用初等数学解读逻辑回归

为了降低理解难度,本文试图用最基础的高中数学来解释逻辑回归,尽量少用或者不用公式,多用图形来直观解释推导公式的现实意义,希望使读者能够对逻辑回归有更直观的理解。

2015-10-20 22:15:33

阅读数:9618

评论数:18

计算广告小窥[下]要啥自行车!

一是总结自己已掌握的知识,二是降低同学们的学习成本。本人能力有限,更缺乏实践经验,文章内容多为书籍和论文的读后感,若有不当或者错误之处,还望各位同学指出,我定悉心求教。在此,向编写《计算广告》的刘鹏和王超两位老师致谢,向各位paper作者致谢。

2016-08-26 22:58:18

阅读数:4152

评论数:2

深度学习与自然语言处理(8)_斯坦福cs224d RNN,MV-RNN与RNTN

这篇课堂笔记将介绍不同类型的RNN(递归神经网络),并介绍它在NLP领域的应用和优势。

2016-07-30 22:22:29

阅读数:6583

评论数:2

深度学习与自然语言处理(7)_斯坦福cs224d 语言模型,RNN,LSTM与GRU

本文为斯坦福大学CS224d课程的中文版内容笔记,已得到斯坦福大学课程@Richard Socher教授的授权翻译与发表

2016-07-18 10:50:02

阅读数:9005

评论数:3

深度学习与自然语言处理(6)_斯坦福cs224d 一起来学Tensorflow part1

Tensorflow是Google提供资金研发的,比较全,支持分布式,同时有Google这样的亲爹在,我猜资源倾斜也是迟早的事情。今天的重点自然是Tensorflow,其他的框架也都很好,大家可以自行尝试。

2016-07-10 15:21:04

阅读数:14504

评论数:0

深度学习与自然语言处理(5)_斯坦福cs224d 大作业测验2与解答

原本打算把作业和答案做个编排,一起发出来给大家看,无奈代码量有点大,贴上来以后文章篇幅过长,于是乎题目的代码解答放到了百度云盘,欢迎自行下载和运行或者调整。

2016-07-03 18:50:13

阅读数:17545

评论数:0

深度学习与自然语言处理(4)_斯坦福cs224d 大作业测验1与解答

前面一个接一个的Lecture,看得老衲自己也是一脸懵逼,不过你以为你做一个安安静静的美男子(总感觉有勇气做deep learning的女生也是一条汉纸)就能在Stanford这样的学校顺利毕业啦?图样图森破,除掉极高的内容学习梯度,这种顶尖大学的作业和考试一样会让你突(tong)飞(bu)猛(y...

2016-06-27 00:44:09

阅读数:20271

评论数:4

深度学习与自然语言处理(3)_斯坦福cs224d Lecture 3

这是斯坦福CS224d深度学习与自然语言处理的第3课,这节课先会介绍单层和多层神经网络和它们在机器学习分类任务中的应用, 接着介绍如何利用反向传播算法来训练这些神经网络模型(在这个方法中,我们将利用偏导数的链式法则来层层更新神经元参数)。在给出神经网络以及这些算法严谨的数学定义后,介绍了训练神经网...

2016-06-19 09:32:00

阅读数:14008

评论数:0

斯坦福cs224d(深度学习在自然语言处理上的应用)Lecture 2

这个课堂笔记我们将会对词向量(也就是词嵌入)的内部任务评价和外部任务评价方法进行讨论。主要的内容是单词类比(word analogies)技术,我们会把它当做内部任务评价的技术并展示其相关示例,它会在词向量的调谐(tune)中发挥重要作用。我们还会讨论如何训练模型的权重/参数,并关注用来进行外部任...

2016-06-12 19:33:42

阅读数:15960

评论数:3

斯坦福大学CS224d基础1:线性代数知识

本文为斯坦福CS229的内容,也是CS224d课程的背景数学知识。概括了在机器学习和深度学习中用到的大部分线性代数知识。为了便于大家查漏补缺,这里根据英文版本整理了一个中文版本。

2016-06-10 23:46:54

阅读数:19928

评论数:2

深度学习与自然语言处理(1)_斯坦福cs224d Lecture 1

本文为斯坦福大学CS224d课程的中文版内容笔记,已得到斯坦福大学课程@Richard Socher教授的授权翻译与发表

2016-06-02 16:13:14

阅读数:30588

评论数:5

机器学习系列(9)_机器学习算法一览(附Python和R代码)

写这篇文章的目的,就是希望它可以让有志于从事数据科学和机器学习的诸位在学习算法的路上少走些路。我会在文章中举例一些机器学习的问题,你们也可以在思考解决这些问题的过程中得到启发。我也会写下对于各种机器学习算法的一些个人理解,并且提供R和Python的执行代码。读完这篇文章,读者们至少可以行动起来亲手...

2016-04-19 16:58:36

阅读数:26464

评论数:5

深度学习与计算机视觉(11)_基于deep learning的快速图像检索系统

本系统是基于CVPR2015的论文《Deep Learning of Binary Hash Codes for Fast Image Retrieval》实现的海量数据下的基于内容图片检索系统,250w图片下,对于给定图片,检索top 1000相似时间约为1s,其基本背景和原理会在下文提到。

2016-03-16 11:34:06

阅读数:10030

评论数:5

机器学习系列(7)_机器学习路线图(附资料)

1. 引言 也许你和这个叫『机器学习』的家伙一点也不熟,但是你举起iphone手机拍照的时候,早已习惯它帮你框出人脸;也自然而言点开今日头条推给你的新闻;也习惯逛淘宝点了找相似之后货比三家;亦或喜闻乐见微软的年龄识别网站结果刷爆朋友圈。恩,这些功能的核心算法就是机器学习领域的内容。 机器学习研...

2016-02-28 11:55:21

阅读数:27189

评论数:20

提示
确定要删除当前文章?
取消 删除
关闭
关闭