2016多校训练Contest6: 1011 Zhu’s Math Problem hdu5803

本文介绍了一种使用数位动态规划方法解决特定四元组问题的算法。问题要求找出满足特定不等式的不同四元组(a,b,c,d)的数量。通过按位枚举二进制数并应用数位DP,可以有效地解决该问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
Zhu is a powerful ACMer/OverWatcher, now a salt-fish comes to ask Zhu a difficult problem. Zhu thinks that problem is so easy, so he wants to know whether you can solve it?
The problem content are as follows.
You are given four integers A , B , C , D , there are many different (a,b,c,d) satisfy a+c>b+d && a+db+c && 0aA && 0bB && 0cC && 0dD ?
 

Input
First Line is an positive integer T(T1000) , represents there are T test cases.
Four each test:
The first line contain four integers A , B , C , D.
You can assume that 0A,B,C,D1018
 

Output
For each test case, output an positive integer represents answer, because the answer may be large , so you are only need to output answer mod 109+7
 

Sample Input
1 2 1 1 1
 

Sample Output
10

这题的做法服气。。

我们考虑按位枚举二进制

将字母移到一边,两个不等式分别是a+c-b-d>0和a+d-b-c>=0

假如枚举到len位,a+c-b-d>=2,那么就算a c剩下的都是0,b d剩下的都是1也可满足不等式

a+d-b-c>=0同理 不等式当前<=-2也同理

那么就可以考虑直接数位dp了

因为每位需要记录的不同的差只有5*5=25种

#include<map>
#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
long long mod=1000000007;
long long f[70][16][5][5];
long long t[5];
inline long long dfs(int len,int lim,int x1,int x2)
{
	if(len<0)
	{
		if(x1>0&&x2>=0)
			return 1;
		return 0;
	}
	if(f[len][lim][x1+2][x2+2]!=-1)
		return f[len][lim][x1+2][x2+2];
	int i,j,k,l;
	int limit[5];
	for(i=1;i<=4;i++)
	{
		if(((t[i]>>len)&1)==1||(lim&(1<<(i-1)))==(1<<(i-1)))
			limit[i]=1;
		else
			limit[i]=0;
	}
	long long ans=0;
	for(i=0;i<=limit[1];i++)
	{
		for(j=0;j<=limit[2];j++)
		{
			for(k=0;k<=limit[3];k++)
			{
				for(l=0;l<=limit[4];l++)
				{
					long long tx1,tx2;
					tx1=x1*(long long)2+i+k-j-l;
					tx2=x2*(long long)2+i+l-j-k;
					if(tx1<=-2||tx2<=-2)
						continue;
					tx1=min(tx1,(long long)2);
					tx2=min(tx2,(long long)2);
					int xx=lim;
					if(i!=limit[1]) xx|=(1<<0);
					if(j!=limit[2]) xx|=(1<<1);
					if(k!=limit[3]) xx|=(1<<2);
					if(l!=limit[4]) xx|=(1<<3);
					ans=(ans+dfs(len-1,xx,tx1,tx2))%mod;
				}
			}
		}
	}
	f[len][lim][x1+2][x2+2]=ans;
	return ans;
}
int main()
{
	int T;
	scanf("%d",&T);
	while(T>0)
	{
		T--;
		scanf("%I64d%I64d%I64d%I64d",&t[1],&t[2],&t[3],&t[4]);
		memset(f,-1,sizeof(f));
		printf("%I64d\n",dfs(60,0,0,0));
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值