使用streaming window函数统计用户不同时间段平均消费金额等指标

本文介绍了一个基于Spark Streaming的实时用户消费分析系统,该系统能够计算每5秒内用户的消费总额、消费次数及平均消费,并通过窗口操作实现了不同时间跨度的数据统计。

场景

现在餐厅老板已经不满足仅仅统计历史用户消费金额总数了,他想知道每个用户半年,每个月,每天,或者一小时消费的总额,来店消费的次数以及平均金额。

给出的例子计算的是每5秒,每30秒,每1分钟的用户消费金额,消费次数,平均消费。

数据格式

{"user":"zhangsan","payment":8}
{"user":"wangwu","payment":7}
....

制作kafka输入数据

与我上篇文章相同
参考这里

处理流程

package StreamingTest

/**
 * Created by liangshiwei on 15/9/9.
 */
import net.liftweb.json._
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}

object WindowsFunction {

  //利用用户消费金额总和计算结果以及用户消费次数统计计算结果计算平均消费金额
  def avgFunction(sum:DStream[(String,Double)],count:DStream[(String,Int)]): DStream[(String,Double)] = {
    val payment = sum.join(count).map(r => {
      val user = r._1
      val sum = r._2._1
      val count = r._2._2
      (user,sum/count)
    })
    payment
  }

  def main (args: Array[String]) {

    def functionToCreateContext(): StreamingContext = {
      val conf = new SparkConf().setAppName("test").setMaster("local[*]")
      val ssc = new StreamingContext(conf, Seconds(5))

      val zkQuorum = "192.168.6.55:2181,192.168.6.56:2181,192.168.6.57:2181"
      val consumerGroupName = "user_payment"
      val kafkaTopic = "user_payment"
      val kafkaThreadNum = 1

      val topicMap = kafkaTopic.split(",").map((_, kafkaThreadNum.toInt)).toMap

      val user_payment = KafkaUtils.createStream(ssc, zkQuorum, consumerGroupName, topicMap).map(x=>{
        parse(x._2)
      })

      //计算每5s每个用户的消费总和
      val paymentSum = user_payment.map(jsonLine =>{
        implicit val formats = DefaultFormats
        val user = (jsonLine \ "user").extract[String]
        val payment = (jsonLine \ "payment").extract[String]
        (user,payment.toDouble)
      }).reduceByKey(_+_)

      //输出结果
      paymentSum.print()

      //计算每5s每个用户的消费次数
      val paymentCount = user_payment.map(jsonLine =>{
        implicit val formats = DefaultFormats
        val user = (jsonLine \ "user").extract[String]
        (user,1)
      }).reduceByKey(_+_)

//      paymentCount.print()

      //计算每5s每个用户平均的消费金额
      val paymentAvg = avgFunction(paymentSum,paymentCount)
//      paymentAvg.print()

      //窗口操作,在其中计算不同时间段的结果,入库的话根据使用场景选择吧
      def windowsFunction()  {
        //每5秒计算最后30秒每个用户消费金额
        val windowSum_30 = paymentSum.reduceByKeyAndWindow((a: Double, b: Double) => (a + b),_-_, Seconds(30), Seconds(5))
//        windowSum_30.print()

        //每5秒计算最后30秒每个用户消费次数
        val windowCount_30 = paymentCount.reduceByKeyAndWindow((a: Int, b: Int) => (a + b),_-_, Seconds(30), Seconds(5))
//        windowCount_30.print()

        //每5秒计算最后30秒每个用户平均消费
        val windowAvg_30 = avgFunction(windowSum_30,windowCount_30)
//        windowAvg_30.print()

        //每5秒计算最后60秒每个用户消费金额
        val windowSum_60 = windowSum_30.reduceByKeyAndWindow((a:Double,b:Double)=>(a+b),_-_,Seconds(10),Seconds(5))
//       windowSum_60.print()

        //每5秒计算最后60秒每个用户消费次数
        val windowCount_60 = windowCount_30.reduceByKeyAndWindow((a:Int,b:Int) => (a+b),_-_,Seconds(10),Seconds(5))
//        windowCount_60.print()

        //每5秒计算最后60秒每个用户平均消费
        val windowAvg_60 = avgFunction(windowSum_60,windowCount_60)
//        windowAvg_60.print
      }

      windowsFunction()

      ssc
    }

    val context = StreamingContext.getOrCreate("checkPoint", functionToCreateContext _)

    context.start()
    context.awaitTermination()
  }
}

结果节选

实际效果你们自己去体验吧

//-----------消费总额-------
(zhangsan,146.0)
(lisi,79.0)
(wangwu,99.0)
(zhaoliu,115.0)

//-----------消费次数-------
(zhangsan,32)
(lisi,18)
(wangwu,30)
(zhaoliu,24)

//-----------平均消费-------
(zhangsan,4.5625)
(lisi,4.388888888888889)
(wangwu,3.3)
(zhaoliu,4.791666666666667)
### 使用 Spark Streaming 实现词频统计 为了实现基于 Spark Streaming 的词频统计功能,可以按照如下方法构建应用程序。此应用会读取来自某个源的数据流并计算其中单词出现的频率。 #### 创建案例类用于转换 RDD 到 DataFrame 定义 `Record` 类来表示每条记录中的单个词语: ```scala /** Case class for converting RDD to DataFrame */ case class Record(word: String) ``` #### 单例模式下的 SparkSession 获取 采用懒加载的方式获取唯一的 `SparkSession` 实例,确保在整个应用程序生命周期内只有一个 `SparkSession` 被创建和使用: ```scala object SparkSessionSingleton { @transient private var instance: SparkSession = _ def getInstance(sparkConf: SparkConf): SparkSession = { if (instance == null) { instance = SparkSession.builder.config(sparkConf).getOrCreate() } instance } } ``` #### 构建 Spark 流程逻辑 下面展示了一个完整的流程框架,它接收输入 DStream 并执行词频统计操作: ```scala val conf = new SparkConf().setAppName("WordCountApp").setMaster("local[*]") // Create a local StreamingContext with two working threads and batch interval of 1 second. val ssc = new StreamingContext(conf, Seconds(1)) // Define the checkpoint directory which is required for stateful transformations like updateStateByKey or window operations. ssc.checkpoint("/path/to/checkpoint") // Source can be any input source such as Kafka, Flume etc., here we assume textFileStream as an example. val lines = ssc.textFileStream("/path/to/input") // Input path where files will appear. // Split each line into words val words = lines.flatMap(_.split(" ")) // Map each word to a tuple containing the word and count of one val pairs = words.map(word => (word, 1)) // Count occurrences of each word over all batches using updateStateByKey function that maintains running totals across multiple batches. var wordCounts = pairs.updateStateByKey[Int](updateFunc) // Print out top ten most frequent words every few seconds. wordCounts.print() ssc.start() // Start the computation ssc.awaitTermination() // Wait for the computation to terminate ``` 上述代码片段展示了如何设置 Spark 配置以及初始化 Streaming 上下文环境;指定了批处理间隔时间,并设置了检查点路径以便支持状态化转换操作[^3]。 对于更新函数 `updateFunc` 可以这样定义: ```scala def updateFunc(values: Seq[Int], state: State[Int]): Option[(String, Int)] = { val currentCount = values.sum + state.getOption.getOrElse(0) Some((state.key.toString(), currentCount)) } ``` 这段代码实现了当接收到新的键值对时,将新旧计数值相加得到最新的总次数,并返回包含该单词及其最新累计数量的结果元组。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值