图像细化——针对的是二值图像 或者用阀值处理的二值图像
(1):例子 左边为输入图像 右边为细化的效果图
(2)思想:
公式: y = p0*2^0 + p1*2^1+ p2*2^2 + p3*2^3 + p4*2^4 + p5*2^5 + p6*2^6 +p7*2^7
前辈们对此作出了总结,得出每个点周围8领域的256种情况,放在一个char data[256]的数组中,不可以删除用0来表示,能被删除的用1来表示。然后对图像进行处理得到二值图像<0和1>,扫描图像,根据公式得出y,依次用data[y]判断该点是否可以被删除,直到所有的点都不可以被删除为止。

本文介绍了OpenCV中的图像细化技术,主要用于处理二值图像。细化过程通过特定算法,将图像边缘细化,增强细节表现。文章通过一个实例展示了细化效果,并详细解释了细化算法的思想,包括图像转换为二值图像、利用特定公式计算相邻像素关系以及判断像素是否可删除的逻辑。最后,概述了细化算法的步骤,并给出了相关代码实现。
最低0.47元/天 解锁文章
687

被折叠的 条评论
为什么被折叠?



