小村长技术blog

strive hard

信息检索的评价指标(Precision, Recall, F-score, MAP)

之前写过一篇blog叫做机器学习实战笔记之非均衡分类问题:http://blog.csdn.net/lu597203933/article/details/38666699其中对Precision和Recall及ROC都有所讲解,其中区别在于Precision,Recall, F-score, ...

2014-12-08 12:39:36

阅读数 34623

评论数 2

PCA降维简介

PCA全称为principal componentanalysis,即主成成分分析,用于降维。对数据进行降维有很多原因。比如:        1:使得数据更易显示,更易懂        2:降低很多算法的计算开销        3:去除噪声 一:基本数学概念 1:方差 均值太简单了,不说了。方差是...

2014-11-27 13:09:39

阅读数 42350

评论数 1

写博客的好处

表达自我 每个人都有表达自我的欲望,看看网络上那么多自拍的照片、视频就明白了,文字是一种最朴素的表达方式,但也是很多人钟爱的方式。通过表达自我,记录成长的足迹,发泄自己郁闷的情感,平衡心态,对自己的成长是很有好的作用的。 结交朋友 博客上无论的表达的什么思想观点,必然会得到另一些志同道合...

2013-03-28 11:08:29

阅读数 1885

评论数 1

object detection资料汇总

ump to... LeaderboardPapers R-CNNMultiBoxSPP-NetDeepID-NetNoCFast R-CNNDeepBoxMR-CNNFaster R-CNNYOLOAttentionNetDenseBoxSSDInside-Outside Net (ION...

2017-04-18 20:18:22

阅读数 4323

评论数 0

triplet loss的原理及caffe代码

1:triplet loss的原理及梯度推到 http://blog.csdn.net/tangwei2014/article/details/467880252:triplet loss如何增加到caffe中:http://blog.csdn.net/tangwei2014/article/de...

2016-12-31 21:02:29

阅读数 3750

评论数 0

简记ReNet

ResNet论文给出了Resnet有3中类型,ResNet50[res3 res4 res6 res3],ResNet101[res3 res4 res23 res3]和ResNet152[res3 res4 res36 res3]层卷积。 ResNet50[res3 res4 res6 res3...

2016-12-17 21:27:28

阅读数 6269

评论数 2

【深度学习】caffe 中的一些参数介绍

转自 http://blog.csdn.net/cyh_24 目录(?)[+] caffe 参数介绍 solver.prototxt net: "models/bvlc_alexnet/train_val.prototxt" test_iter: 100...

2016-08-22 20:39:35

阅读数 3454

评论数 0

Java写的自动抢购红米note手机(2016/4/6 米粉节)

受同学所托,帮其抢红米手机,老是抢不到,于是就想着写个程序,多线程实时监听,虽然最终还是没抢到,但还是将程序分享给大家。(其实在排除学校网速的影响下,我真怀疑雷总到底有没有发布小米手机让大家抢,所以还是建议大家尽量不要抢小米手机,太坑!)       程序使用java写的,采用Maven构建的一...

2016-04-17 16:42:09

阅读数 6848

评论数 6

图像质量的客观评估指标PSNR与SSIM

图像质量的客观评估指标PSNR与SSIM PSNR SSIM 代码 参考文献 1:PSNRPSNR是最为常用的图像质量评估指标: 其中K为图像对应二进制位数,一般为8。MSE为均方误差,计算公式为: 2:SSIMSSIM[^footnote]主要用来衡量图像结构完整性,是另一种比较常用...

2016-03-30 21:48:02

阅读数 18980

评论数 3

【机器学习系列】机器学习界大牛林达华推荐的书籍

Recommended Books Here is a list of books which I have read and feel it is worth recommending to friends who are interested in computer science. ...

2015-07-08 21:02:45

阅读数 3960

评论数 0

【Linux编程】C/C++获取目录下文件或目录及linux中fork()函数详解(原创!!实例讲解)

在Unix/Linux系统中,要获取一个指定目录下所有的文件或文件夹,一般用dirent.h(POSIX标准定义的目录操作头文件)。 一、数据类型 在头文件中定义了两种主要的数据类型。 DIR:代表一个目录流的结构。 1 2 3 4 5 6 7 8 9 10 11 12 13 ...

2015-07-05 20:29:29

阅读数 5050

评论数 0

DeepLearning to digit recognizer in kaggle

DeepLearning to digit recongnizer in kaggle          最近在看deeplearning,于是就找了kaggle上字符识别进行练习。这里我主要用两种工具箱进行求解,并比对两者的结果。两种工具箱分别是DeepLearningToolbox和caffe...

2015-07-03 15:35:15

阅读数 4778

评论数 3

Ubuntu14.10+cuda7.0+caffe配置

Ubuntu14.10+cuda7.0+caffe配置 一:linux安装 Linux安装不说了,我这里安装的是ubuntu14.10   二:nVidia驱动和CUDA Toolkit的安装和调试(*.run方法) 1: Verify You Have a CUDA-Capable G...

2015-07-03 15:27:33

阅读数 22166

评论数 4

DeepLearnToolBox中CNN源码解析

DeepLearnToolbox是一个简单理解CNN过程的工具箱,可以在github下载。为了理解卷积神经网络的过程,我特此对CNN部分源码进行了注释。公式的计算可以由上一篇blog推导得出。          注意:代码中没有的subsampling进行设置参数,将subsampling层的参数...

2015-06-20 22:36:34

阅读数 37384

评论数 22

CNN公式推导

CNN公式推导 1 前言          在看此blog之前,请确保已经看懂我的前两篇blog【深度学习笔记1(卷积神经网络)】和【BP算法与公式推导】。并且已经看过文献[1]的论文【Notes on Convolutional Neural Networks】。因为本文就是讲解文献[1]论文前...

2015-06-20 22:30:01

阅读数 33322

评论数 4

BP算法与公式推导

BP(backpropgationalgorithm ):后向传导算法,顾名思义就是从神经网络的输出(顶层)到输入(底层)进行求解。那么求解什么呢,求解的就是神经网络中的参数的导数,即参数梯度方向,从而就可以使用梯度下降等求解无约束问题(cost function的最值)的方法求得最终的参数。神经...

2015-06-20 21:58:01

阅读数 36862

评论数 2

深度学习笔记1(卷积神经网络)

深度学习笔记1(卷积神经网络)          在看完了UFLDL教程之后,决定趁热打铁,继续深度学习的学习,主要想讲点卷积神经网络,卷积神经网络是深度学习的模型之一,还有其它如AutoEncoding、Deep Belief Network、Restricted Boltzmann Machi...

2015-06-20 21:49:26

阅读数 14594

评论数 6

UFLDL教程笔记及练习答案六(稀疏编码与稀疏编码自编码表达)

稀疏编码(SparseCoding) sparse coding也是deep learning中一个重要的分支,同样能够提取出数据集很好的特征(稀疏的)。选择使用具有稀疏性的分量来表示我们的输入数据是有原因的,因为绝大多数的感官数据,比如自然图像,可以被表示成少量基本元素的叠加,在图像中这些基本元...

2015-06-14 10:34:35

阅读数 5658

评论数 1

UFLDL教程笔记及练习答案五(自编码线性解码器与处理大型图像**卷积与池化)

自动编码线性解码器 自动编码线性解码器主要是考虑到稀疏自动编码器最后一层输出如果用sigmoid函数,由于稀疏自动编码器学习是的输出等于输入,simoid函数的值域在[0,1]之间,这就要求输入也必须在[0,1]之间,这是对输入特征的隐藏限制,为了解除这一限制,我们可以使最后一层用线性函数及a ...

2015-06-11 22:00:08

阅读数 3521

评论数 2

UFLDL教程笔记及练习答案四(建立分类用深度学习---栈式自编码神经网络)

此次主要由自我学习过度到深度学习,简单记录如下: (1)深度学习比浅层网络学习对特征具有更优异的表达能力和紧密简洁的表达了比浅层网络大的多的函数集合。 (2)将传统的浅层神经网络进行扩展会存在数据获取、局部最值和梯度弥散的缺点。 (3)栈式自编码神经网络是由多层稀疏自编码器构成的神经网络(最后一层...

2015-06-11 13:33:48

阅读数 5907

评论数 9

提示
确定要删除当前文章?
取消 删除
关闭
关闭