UOJ241(递推+矩阵快速幂)

原创 2016年08月29日 11:11:48

题目链接:UOJ241

先吐槽一下UOJ,额,注册了没做看题就要算参加的,可能是实在比较难参加的人比较少吧,傻傻地一场掉回解放前。

这是UR16的A题。

一句话题意:长度为n的环,每个点染色,有m种颜色,要求相邻相对不能同色,求方案数。(定义两个点相对为去掉这两个点后环能被分成相同大小的两段)

思路:
如果n是奇数,就转化为了一个比较简单的递推,可以像题解中那样开两维,也可以直接写,如果第n-1个和第1个同色,则第n个有m - 1种涂色方案,这时有(m - 1) * f(n - 2)种方案,如果两者不同色,则有(m - 2) * f(n - 1)种方案,化出来的矩阵应该是一样的,但是考虑到偶数的情况,我发现开两维会想的清楚许多。

如果n是偶数,那么照题解中说的,多开一维,设 F[i][0..8]表示推到第 i 格的所有二元三进制状态的合法方案数,然后递推一波即可。其中设第一个颜色为A,与其相对的格子颜色为B。

然后一些边界情况要考虑清楚。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>

using namespace std;

typedef long long ll;
typedef vector<ll> vec;
typedef vector<vec> mat;

const ll mod = 998244353;

mat mul(mat & A,mat & B){
    mat C(A.size(),vec(B[0].size()));
    for(int i = 0;i < (int) A.size();i++){
        for(int k = 0;k < (int) B.size();k++) if(A[i][k] != 0){
            for(int j = 0;j < (int)B[0].size();j++){
                C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % mod;
            }
        }
    }
    return C;
}

mat pow(mat A,ll n){
    mat B(A.size(),vec(A.size()));
    for(int i = 0;i < A.size();i++){
        B[i][i] = 1;
    }
    while(n > 0){
        if(n & 1) B = mul(B,A);
        A = mul(A,A);
        n >>= 1;
    }
    return B;
}

ll n,m;


int main(int argc, const char * argv[]) {
    cin >> n >> m;
    if(n & 1){
        if(m == 1){
            cout << 0 << endl;
            return 0;
        }
        mat A(2,vec(2));
        A[0][0] = (m - 2) % mod;
        A[0][1] = (m - 1) % mod;
        A[1][0] = 1;
        A[1][1] = 0;
        A = pow(A,n - 1);
        ll ans = A[0][1] * m % mod;
        cout << ans << endl;
    }else{
        if(m == 1){
            cout << 0 << endl;
            return 0;
        }
        if(n == 2){
            cout << m * (m - 1) % mod << endl;
            return 0;
        }else{
            if(m == 2){
                if(n % 4 == 0){
                    cout << 0 << endl;
                }else{
                    cout << 2 << endl;
                }
                return 0;
            }
            else{
                mat A(9,vec(9));
                for(int i = 0;i < 9;i++){
                    for(int j = 0;j < 9;j++){
                        A[i][j] = 0;
                    }
                }
                A[5][0] = 1;
                A[5][6] = 1;
                A[5][7] = 1;
                A[5][1] = 1;
                A[7][0] = 1;
                A[7][2] = 1;
                A[7][5] = 1;
                A[7][3] = 1;
                A[3][1] = (m - 2) % mod;
                A[3][0] = (m - 3) % mod;
                A[3][2] = (m - 2) % mod;
                A[3][6] = (m - 3) % mod;
                A[3][7] = (m - 2) % mod;
                A[1][3] = (m - 2) % mod;
                A[1][0] = (m - 3) % mod;
                A[1][6] = (m - 2) % mod;
                A[1][2] = (m - 3) % mod;
                A[1][5] = (m - 2) % mod;
                A[6][2] = (m - 2) % mod;
                A[6][0] = (m - 3) % mod;
                A[6][1] = (m - 2) % mod;
                A[6][3] = (m - 3) % mod;
                A[6][5] = (m - 2) % mod;
                A[2][6] = (m - 2) % mod;
                A[2][0] = (m - 3) % mod;
                A[2][3] = (m - 2) % mod;
                A[2][1] = (m - 3) % mod;
                A[2][7] = (m - 2) % mod;
                A[0][0] = ((m - 3) + (m == 3 ? 0 :(m - 4) * (m - 4))) % mod;
                A[0][1] = (m - 3) * (m - 3) % mod;
                A[0][2] = (m - 3) * (m - 3) % mod;
                A[0][3] = (m - 3) * (m - 3) % mod;
                A[0][5] = (m - 2) * (m - 3) % mod;
                A[0][6] = (m - 3) * (m - 3) % mod;
                A[0][7] = (m - 2) * (m - 3) % mod;
                A = pow(A,n / 2 - 1);
                ll ans = 0;
                ans += (A[0][5] + A[2][5] + A[3][5] + A[5][5]) % mod;
                ans = ans * m % mod * (m - 1) % mod;
                cout << ans << endl;
            }
        }
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Poj 3734 Blocks【递推+矩阵快速幂】好题

Blocks Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6239   Accepte...

【矩阵快速幂+递推方程】The Little Architect

24.The Little Architect 成绩: 10 / 折扣: 0.8 Description Silence is a little architect, he likes to...
  • lzq08ms
  • lzq08ms
  • 2011年09月14日 20:05
  • 705

Codeforeces #420 E. Okabe and El Psy Kongroo 递推加矩阵快速幂

比较好的一道题,首先是是递推,递推很容易想到,我们假设dp[i][j]表示走到i,j的方案数 那么其实就是求出每一段a[i]-b[i]的值 就可以得出来了 可以得到 dp[i][j+1] += d...

【NOIP practice】BSOJ 1709 守望者的烦恼 矩阵快速幂优化递推

1709 -- 【模拟试题】守望者的烦恼  Description 【题目背景】    守望者-warden,长期在暗夜精灵的的首都艾萨琳内担任视察监狱的任务,监狱是成长条行的,守望者warden拥有...

WOJ 654 递推+矩阵快速幂

此题就是之前所说的,矩阵快速幂递推啦。我就真的很好奇,为什么当时想不到用矩阵快速幂……         题目,很容易理解,输入一个n,把从1开始到n的所有数字连成一个数字,然后问这个数字模11的结果是...

hdu 2604 Queuing【递推+矩阵快速幂】

Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S...

hdu 4565 So Easy! 递推+矩阵快速幂

So Easy! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total...

HDU 3658 How many words (矩阵快速幂&递推)

In order to make a new word, we will pick out m letters from all the upper case letters and lower ca...

acdream 1060 递推数 (矩阵快速幂+循环节)

链接:click here~~ 题意: 递推数 Problem Description 已知A(0) = 0 , A(1) = 1 , A(n) = 3 * A(n-1) + A(n-2) (n ≥ ...

hrbust 1430 哈理工oj 1430 神秘植物【递推+矩阵快速幂】

神秘植物 Time Limit: 1000 MS Memory Limit: 65536 K Total Submit: 55(26 users) Total Accepted...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:UOJ241(递推+矩阵快速幂)
举报原因:
原因补充:

(最多只允许输入30个字)