###### UOJ241(递推＋矩阵快速幂）

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>

using namespace std;

typedef long long ll;
typedef vector<ll> vec;
typedef vector<vec> mat;

const ll mod = 998244353;

mat mul(mat & A,mat & B){
mat C(A.size(),vec(B[0].size()));
for(int i = 0;i < (int) A.size();i++){
for(int k = 0;k < (int) B.size();k++) if(A[i][k] != 0){
for(int j = 0;j < (int)B[0].size();j++){
C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % mod;
}
}
}
return C;
}

mat pow(mat A,ll n){
mat B(A.size(),vec(A.size()));
for(int i = 0;i < A.size();i++){
B[i][i] = 1;
}
while(n > 0){
if(n & 1) B = mul(B,A);
A = mul(A,A);
n >>= 1;
}
return B;
}

ll n,m;

int main(int argc, const char * argv[]) {
cin >> n >> m;
if(n & 1){
if(m == 1){
cout << 0 << endl;
return 0;
}
mat A(2,vec(2));
A[0][0] = (m - 2) % mod;
A[0][1] = (m - 1) % mod;
A[1][0] = 1;
A[1][1] = 0;
A = pow(A,n - 1);
ll ans = A[0][1] * m % mod;
cout << ans << endl;
}else{
if(m == 1){
cout << 0 << endl;
return 0;
}
if(n == 2){
cout << m * (m - 1) % mod << endl;
return 0;
}else{
if(m == 2){
if(n % 4 == 0){
cout << 0 << endl;
}else{
cout << 2 << endl;
}
return 0;
}
else{
mat A(9,vec(9));
for(int i = 0;i < 9;i++){
for(int j = 0;j < 9;j++){
A[i][j] = 0;
}
}
A[5][0] = 1;
A[5][6] = 1;
A[5][7] = 1;
A[5][1] = 1;
A[7][0] = 1;
A[7][2] = 1;
A[7][5] = 1;
A[7][3] = 1;
A[3][1] = (m - 2) % mod;
A[3][0] = (m - 3) % mod;
A[3][2] = (m - 2) % mod;
A[3][6] = (m - 3) % mod;
A[3][7] = (m - 2) % mod;
A[1][3] = (m - 2) % mod;
A[1][0] = (m - 3) % mod;
A[1][6] = (m - 2) % mod;
A[1][2] = (m - 3) % mod;
A[1][5] = (m - 2) % mod;
A[6][2] = (m - 2) % mod;
A[6][0] = (m - 3) % mod;
A[6][1] = (m - 2) % mod;
A[6][3] = (m - 3) % mod;
A[6][5] = (m - 2) % mod;
A[2][6] = (m - 2) % mod;
A[2][0] = (m - 3) % mod;
A[2][3] = (m - 2) % mod;
A[2][1] = (m - 3) % mod;
A[2][7] = (m - 2) % mod;
A[0][0] = ((m - 3) + (m == 3 ? 0 :(m - 4) * (m - 4))) % mod;
A[0][1] = (m - 3) * (m - 3) % mod;
A[0][2] = (m - 3) * (m - 3) % mod;
A[0][3] = (m - 3) * (m - 3) % mod;
A[0][5] = (m - 2) * (m - 3) % mod;
A[0][6] = (m - 3) * (m - 3) % mod;
A[0][7] = (m - 2) * (m - 3) % mod;
A = pow(A,n / 2 - 1);
ll ans = 0;
ans += (A[0][5] + A[2][5] + A[3][5] + A[5][5]) % mod;
ans = ans * m % mod * (m - 1) % mod;
cout << ans << endl;
}
}
}
return 0;
}


#### 矩阵快速幂 ——（递推表达式）

2016-05-06 19:44:01

#### 洛谷 P1939 【模板】矩阵加速（数列）：优化递推式的方法——矩阵快速幂

2017-12-15 19:49:08

#### NYOJ 301 递推求值（矩阵快速幂）

2014-04-04 12:25:44

#### 矩阵快速幂的应用——优化递推过程

2017-05-03 11:10:29

#### 蓝桥杯：递推求值（快速幂，矩阵快速幂）

2017-05-23 17:08:01

#### 矩阵快速幂优化递推式 例：斐波那契数列

2016-10-04 16:52:15

#### 矩阵快速幂在常系数线性递推关系中的应用

2016-09-09 00:34:17

#### poj3070(利用矩阵快速幂加速递推式)

2014-08-27 10:41:58

#### NYOJ - 301 - 递推求值 ( 递推+矩阵快速幂 )

2016-12-12 14:47:47

#### 矩阵快速幂与递推式

2016-10-31 19:13:53

UOJ241(递推＋矩阵快速幂）