基于直方图特征的图像搜索

原创 2013年03月19日 12:49:30

概述

       图像搜索现实的一般过程:

提取图像特征值→对特征值进行处理→匹配特征值

       图像的特征值有很多,基于颜色特征,纹理特征,形状特征等,下面是基于图像颜色直方图特征的图像搜索。

(参考文章:http://blog.csdn.net/jia20003/article/details/7771651#comments )

原理

       巴氏系数(Bhattacharyyacoefficient)算法


       其中P, P’分别代表源与候选的图像直方图数据,对每个相同i的数据点乘积开平方以后相加

得出的结果即为图像相似度值(巴氏系数因子值),范围为01之间。为什么是到1之间,这是数学的问题,就不追究了。

步骤

一、     求源图像和要被搜索图像的直方图特征

二、     根据直方图特征,用巴氏系数算法求出源图像和要搜索图像的相似度

       彩色图像的每个像素由red,green,blue三种组成,如何好地表示彩色图像的直方图更呢?一般有两种方式:

       一种是用三维的直方图表示,这种方式简单明了,如hist[][]hist[0][]表示red的直方图,hist[1][]表示green的直方图,hist[2][]表示blue的直方图;如一个像素为(156,72,89),hist[0][156]++; hist[0][72]++, hist[0][89]++;

       另一种方式是降低灰度的级数,用一维直方图表示,如将256级的灰度降至16级,可用12位的int表示灰度值,前4位表示red,中间4们表示green,后面4位表示blue;一个像素为(156,72,89), r=156/16=9; g=72/16=4,b=89/16=5; index = r<<(2*4) | g<<4 | b; hist[index] ++;

 源码


三维直方图表示

/**
	 * 求三维的灰度直方图
	 * @param srcPath
	 * @return
	 */
	public static double[][] getHistgram(String srcPath) {
		BufferedImage img = ImageDigital.readImg(srcPath);
		return getHistogram(img);
	}
	/**
	 * hist[0][]red的直方图,hist[1][]green的直方图,hist[2][]blue的直方图
	 * @param img 要获取直方图的图像
	 * @return 返回r,g,b的三维直方图
	 */
	public static double[][] getHistogram(BufferedImage img) {
		int w = img.getWidth();
		int h = img.getHeight();
		double[][] hist = new double[3][256]; 
		int r, g, b;
		int pix[] = new int[w*h]; 
		pix = img.getRGB(0, 0, w, h, pix, 0, w);
		for(int i=0; i<w*h; i++) {
			r = pix[i]>>16 & 0xff;
			g = pix[i]>>8 & 0xff;
			b = pix[i] & 0xff;
			/*hr[r] ++;
			hg[g] ++;
			hb[b] ++;*/
			hist[0][r] ++;
			hist[1][g] ++;
			hist[2][b] ++;
		}
		for(int j=0; j<256; j++) {
			for(int i=0; i<3; i++) {
				hist[i][j] = hist[i][j]/(w*h);
				//System.out.println(hist[i][j] + "  ");
			}
		}
		return hist;
	}
	public double indentification(String srcPath, String destPath) {
		BufferedImage srcImg = ImageDigital.readImg(srcPath);
		BufferedImage destImg = ImageDigital.readImg(destPath);
		return indentification(srcImg, destImg);
	}
	
	public double indentification(BufferedImage srcImg, BufferedImage destImg) {
		double[][] histR = getHistogram(srcImg);
		double[][] histD = getHistogram(destImg);
		return indentification(histR, histD);
	}
	
	public static double indentification(double[][] histR, double[][] histD) {
		double p = (double) 0.0;
		for(int i=0; i<histR.length; i++) {
			for(int j=0; j<histR[0].length; j++) {
				p += Math.sqrt(histR[i][j]*histD[i][j]);
			}
		}
		return p/3;
	}
/**
	 * 用三维灰度直方图求图像的相似度
	 * @param n
	 * @param str1
	 * @param str2
	 */
	public static void histogramIditification(int n, String str1, String str2) {
		double p = 0;
		double[][] histR = GreyIdentification.getHistgram(str1); 
		double[][] histD = null;
		for(int i=0; i<n; i++) {
			histD = GreyIdentification.getHistgram(str2 + (i+1) + ".jpg");
			p = GreyIdentification.indentification(histR, histD);
			System.out.print((i+1) + "--" + p + "    ");
		}
	}

一维直方图表示

/**
	 * 求一维的灰度直方图
	 * @param srcPath
	 * @return
	 */
	public static double[] getHistgram2(String srcPath) {
		BufferedImage img = ImageDigital.readImg(srcPath);
		return getHistogram2(img);
	}
	/**
	 * 求一维的灰度直方图
	 * @param img
	 * @return
	 */
	public static double[] getHistogram2(BufferedImage img) {
		int w = img.getWidth();
		int h = img.getHeight();
		int series = (int) Math.pow(2, GRAYBIT);	//GRAYBIT=4;用12位的int表示灰度值,前4位表示red,中间4们表示green,后面4位表示blue
		int greyScope = 256/series;
		double[] hist = new double[series*series*series]; 
		int r, g, b, index;
		int pix[] = new int[w*h]; 
		pix = img.getRGB(0, 0, w, h, pix, 0, w);
		for(int i=0; i<w*h; i++) {
			r = pix[i]>>16 & 0xff;
			r = r/greyScope;
			g = pix[i]>>8 & 0xff;
			g = g/greyScope;
			b = pix[i] & 0xff;
			b = b/greyScope;
			index = r<<(2*GRAYBIT) | g<<GRAYBIT | b; 
			hist[index] ++;
		}
		for(int i=0; i<hist.length; i++) {
			hist[i] = hist[i]/(w*h);
			//System.out.println(hist[i] + "  ");
		}
		return hist;
	}
	public double indentification2(String srcPath, String destPath) {
		BufferedImage srcImg = ImageDigital.readImg(srcPath);
		BufferedImage destImg = ImageDigital.readImg(destPath);
		return indentification2(srcImg, destImg);
	}
	
	public double indentification2(BufferedImage srcImg, BufferedImage destImg) {
		double[] histR = getHistogram2(srcImg);
		double[] histD = getHistogram2(destImg);
		return indentification2(histR, histD);
	}
	
	public static double indentification2(double[] histR, double[] histD) {
		double p = (double) 0.0;
		for(int i=0; i<histR.length; i++) {
			p += Math.sqrt(histR[i]*histD[i]);
		}
		return p;
	}
/**
	 * 用一维直方图求图像的相似度
	 * @param n
	 * @param str1
	 * @param str2
	 */
	public static void histogramIditification2(int n, String str1, String str2) {
		double p = 0;
		double[] histR = GreyIdentification.getHistgram2(str1); 
		double[] histD = null;
		for(int i=0; i<n; i++) {
			histD = GreyIdentification.getHistgram2(str2 + (i+1) + ".jpg");
			p = GreyIdentification.indentification2(histR, histD);
			System.out.print((i+1) + "--" + p + "    ");
		}
	}

效果

源图像(要搜索的图像)


要被搜索的图像


搜索的结果,相似度从大到小


版权声明:本文为博主原创文章,未经博主允许不得用于任何商业用途,转载请注明出处。

基于直方图的特征-----经典的SIFT特征

author:liumm 时间:2014/7/29-------

特征直方图的特征参数

select_shape basic 'area' 面积 'row' 行 'column' 列 'width' 宽 'height' 高 'row1' 左上角的行坐标 'colum...

目标检测的图像特征提取之(一)HOG特征

1、HOG特征:        方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统...

颜色特征提取(一)------颜色直方图

颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质.一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献.由于颜色对图像或图像区域的方向、大小等变化不敏感,所...

【图像特征提取1】方向梯度直方图HOG---从理论到实践------附带积分图像的解析

(一)特征检测算法的综述                   计算机视觉理论中的特征描述是常见的目标分析技术之一,关键点的检测和关键点的提取是目标分析的重要手段和重要步骤之一。局部图像特征描述的核心...

高并发系统之限流特技:有了它,京东6.18如虎添翼!

转载 ------ 2016-06-24 张开涛相关文章 在开发高并发系统时有三把利器用来保护系统:缓存、降级和限流。缓存的目的是提升系统访问速度和增大系统能处理的容量,可谓是抗高并发流量的银弹;...

数字信号处理的基础-卷积的理解

在理解卷积之前,首先理解输入信号的一些变换: 对于一组离散的输入信号,可以表示为信号的权重值与单位脉冲信号或是脉冲信号的移位的乘积,几如下表达式所示: 其中x[k]为当前信号的权重值,后面一部分为...

基于直方图特征的图像搜索

[置顶] 基于直方图特征的图像搜索 分类: 图像处理2013-03-19 12:49 507人阅读 评论(9) 收藏 举报 图像搜索特征值直方图 目录(?)[+] 概述 ...
  • pi9nc
  • pi9nc
  • 2013年09月18日 08:35
  • 1204

OpenCV基于直方图特征的图像搜索

转自:http://blog.csdn.net/jia20003/article/details/7771651#comments图像处理之相似图片识别(直方图应用篇)算法概述:首先对源图像与要筛选的...
  • Augusdi
  • Augusdi
  • 2013年05月02日 15:49
  • 3936

图像相似度(测试)--基于直方图特征的图像搜索

转自:http://blog.csdn.net/jia20003/article/details/7771651#comments 图像处理之相似图片识别(直方图应用篇) 算法概述: 首先对...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:基于直方图特征的图像搜索
举报原因:
原因补充:

(最多只允许输入30个字)