基于MATLAB的灰度直方图的图像检索
摘 要: 针对用传统灰度直方图方法检索图像效果不佳的问题,提出了结合灰度直方图和边界方向直方图的方法。灰度直方图反映了灰度图像的整体亮度特征,而忽略了图像的空间分布。而边界方向直方图则表征了图像的形状特征。论文综合使用图像的颜色特征与形状特征进行图像,实验结果表明相比使用单个特征提高了检索正确率。
关键词:图像检索,灰度直方图,边界方向直方图
1 前言
随着互联网的发展,人类的生活已与网络密不可分。网络共享的资源包括数目众多的文字、图像及视频等数据。而如果用户需要从大量的图像中搜索到自己需要的一副图像,就需要应用图像检索技术。图像检索技术包括基于文本的图像检索技术(text-based image retrieval,TBIR)和基于内容的图像检索技术(content-based image retrieval,CBIR)。TBIR依靠人工对图像进行文字注解,利用文本检索实现对图像特征的查找。由于文字很难反映图像中的完整内容,且费时费力,CBIR技术已渐渐不能适应图像检索的需求。CBIR利用图像自身具有的颜色、纹理、形状及区域等特征,依靠例图在图像数据库中进行检索,实现了图像视觉内容特征的检索。由于能更好地满足用户对图像的检索需求,CBIR成为图像检索技术研究的主流。
灰度图像作为数字图像的一大类,具有灰度分辨率高的特点,包含了十分丰富的图像信息。在MATLAB中,可以将数字图像转化成灰度图像,计算其灰度直方图作为图像的一个特征。
形状特征是图像的一种基本特征,也是人类视觉系统进行物体识别时所识别的关键信息之一。边界方向直方图具有尺度不变性, 能够比较好的描述图像的大体形状。
综合特征检索就是综合图像的颜色、形状、纹理或空间位置等特征表示,计算图像特征向量。各个特征间应有一个权重关系,由用户根据需要进行调整,以适应不同情况的查询。本文采用的检索方式就是综合颜色特征和形状特征的图像检索,与单个特征检索相比,多特征组合的图像检索提高了检索正确率。
2 数字图像表示
数字图像,又称为数码图像或数位图像,是二维图像用有限数值像素的表示。数字图像是由模拟图像数字化得到的、以像素为基本元素的、可以用计算机或者数字电路存储和处理的图像。
像素是数字图像的基本元素,像素是在模拟图像数字化时对连续空间进行离散化得到的,每个像素具有各自的行、列坐标,同时每个像素都具有整数灰度值或颜色值。
每个图像的像素通常对应于二维空间中一个特定的点,并且有一个或者多个与那个点相关的采样值。根据这些采样数目及其特性的不同,数字图像可以划分为:二值图像、灰度图像、彩色图像等。
二值图像 (Binary Image)图像中每个像素的亮度值(Intensity)仅可以取自0到1的图像。 灰度图像 (Gray Scale Image)也称为灰阶图像图像中每个像素可以由0(黑)到255(白)