关闭

Dlib提取人脸特征点(68点,opencv画图)

2220人阅读 评论(4) 收藏 举报
分类:

主要在官网给的Demo基础之上用OpenCV把特征点描绘出来了。


很早之前写过一篇配置Dlib环境的博客,现在来稍微梳理下提取特征点的使用方法。

上一篇配置环境博客地址:http://blog.csdn.net/zmdsjtu/article/details/52422847


惯例先放效果图吧:


动图如下:





接着就是简单粗暴的代码:

  1. //@zmdsjtu@163.com  
  2. //2016-12-4  
  3. //http://blog.csdn.net/zmdsjtu/article/details/53454071  
  4. #include <dlib/opencv.h>  
  5. #include <opencv2/opencv.hpp>  
  6. #include <dlib/image_processing/frontal_face_detector.h>  
  7. #include <dlib/image_processing/render_face_detections.h>  
  8. #include <dlib/image_processing.h>  
  9. #include <dlib/gui_widgets.h>  
  10.   
  11. using namespace dlib;  
  12. using namespace std;  
  13.   
  14. int main()  
  15. {  
  16.     try  
  17.     {  
  18.         cv::VideoCapture cap(0);  
  19.         if (!cap.isOpened())  
  20.         {  
  21.             cerr << "Unable to connect to camera" << endl;  
  22.             return 1;  
  23.         }  
  24.   
  25.         //image_window win;  
  26.   
  27.         // Load face detection and pose estimation models.  
  28.         frontal_face_detector detector = get_frontal_face_detector();  
  29.         shape_predictor pose_model;  
  30.         deserialize("shape_predictor_68_face_landmarks.dat") >> pose_model;  
  31.   
  32.         // Grab and process frames until the main window is closed by the user.  
  33.         while (cv::waitKey(30) != 27)  
  34.         {  
  35.             // Grab a frame  
  36.             cv::Mat temp;  
  37.             cap >> temp;  
  38.   
  39.             cv_image<bgr_pixel> cimg(temp);  
  40.             // Detect faces   
  41.             std::vector<rectangle> faces = detector(cimg);  
  42.             // Find the pose of each face.  
  43.             std::vector<full_object_detection> shapes;  
  44.             for (unsigned long i = 0; i < faces.size(); ++i)  
  45.                 shapes.push_back(pose_model(cimg, faces[i]));  
  46.       
  47.             if (!shapes.empty()) {  
  48.                 for (int i = 0; i < 68; i++) {  
  49.                     circle(temp, cvPoint(shapes[0].part(i).x(), shapes[0].part(i).y()), 3, cv::Scalar(0, 0, 255), -1);  
  50.                     //  shapes[0].part(i).x();//68个  
  51.                 }  
  52.             }  
  53.             //Display it all on the screen  
  54.             imshow("Dlib特征点", temp);  
  55.   
  56.         }  
  57.     }  
  58.     catch (serialization_error& e)  
  59.     {  
  60.         cout << "You need dlib's default face landmarking model file to run this example." << endl;  
  61.         cout << "You can get it from the following URL: " << endl;  
  62.         cout << "   http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2" << endl;  
  63.         cout << endl << e.what() << endl;  
  64.     }  
  65.     catch (exception& e)  
  66.     {  
  67.         cout << e.what() << endl;  
  68.     }  
  69. }  

来看下上面那段代码,所有的需要的特征点都存储在Shapes里。仔细看看下面这行代码:
  1. circle(temp, cvPoint(shapes[0].part(i).x(), shapes[0].part(i).y()), 3, cv::Scalar(0, 0, 255), -1);  


可以看到shpes[0]代表的是第一个人(可以同时检测到很多个人),part(i)代表的是第i个特征点,x()和y()是访问特征点坐标的途径。


每个特征点的编号如下:

在上述画图的基础上加了如下一行代码:

  1. putText(temp, to_string(i), cvPoint(shapes[0].part(i).x(), shapes[0].part(i).y()), CV_FONT_HERSHEY_PLAIN, 1, cv::Scalar(255, 0, 0),1,4);  


效果图:


对照着上图,比如说想获取鼻尖的坐标,那么横坐标就是shapes[0].part[30].x(),其余的类似。


在这个的基础上就可以做很多有意思的事情啦,2333

2
0
查看评论

使用Dlib库进行68个人脸特征点检测

dlib人脸检测共可检测出68个检测点 官网上的例子:http://dlib.net/face_landmark_detection_ex.cpp.html 进行适当的改写。 其中:D:\OpenCV\shape_predictor_68_face_landmarks.dat 是从 htt...
  • liukang325
  • liukang325
  • 2017-02-15 17:54
  • 4026

人脸关键点标识参考

85点 (AFLW) 68点 (Dlib) 27点 21点 (aflw) 5点
  • u010333076
  • u010333076
  • 2016-06-02 11:14
  • 4223

Dlib提取人脸特征点(68点,opencv画图)

Dlib+opencv 68点特征点的使用以及绘图。
  • zmdsjtu
  • zmdsjtu
  • 2016-12-04 14:31
  • 22583

基于Caffe的人脸关键点检测实现

引言 如果关注Kaggle 机器学习项目的同学,一定很熟悉人脸关键点检测这个任务,在2013 年的时候,ICML举办一个的challgene,现在放在kaggle 上作为 一种最常规kaggle入门任务而存在。 本文的主要目的在于验证深度学习模型在人脸点检测效果,踩踩里面的坑。 任务介绍 人...
  • haoji007
  • haoji007
  • 2016-10-09 11:36
  • 1772

人脸关键点标识参考

85点 (AFLW) 68点 (Dlib) 27点 21点 (aflw) 5点
  • haoji007
  • haoji007
  • 2016-10-16 08:33
  • 781

Dlib 实现人脸的68点检测

Dlib实现68点标定效果图展示: 使用了Dlib库进行的人脸68点的标定操作,拿到68点后 会很方便通过特征点追加3D挂件。 使用前准备:配置VS2015的Dlib库的支持主要是通过68点的模型进行提取脸部的68点的特征值。(相应细节都已经注释)//设置人脸的标记点 #include &l...
  • qq_15807167
  • qq_15807167
  • 2017-04-01 15:04
  • 12514

Dlib机器学习库学习系列三----人脸对齐(特征点检测)

本篇博客是Dlib库学习的第三篇---人脸对齐。人脸对齐与人脸检测工程建立与配置基本相同,在此不再赘述。可参照我上一篇博客。闲话少说,来点干货。      步骤一:建立并配置工程,参照上一篇博客。      步骤二:下载形状模型文件 ...
  • Sunshine_in_Moon
  • Sunshine_in_Moon
  • 2015-12-02 16:51
  • 16698

【Opencv】 于仕琪 人脸68个特征点分布情况

// 鼻尖 30 // 鼻根 27 // 下巴 8 // 左眼外角 36 // 左眼内角 39 // 右眼外角 46 // 右眼内角 42 // 嘴中心 66 // 嘴左角 48 // 嘴右角 54 // 左脸最外 0 // 右脸最外 16
  • zj360202
  • zj360202
  • 2017-11-30 12:19
  • 419

dlib人脸检测68点训练模型

  • 2015-11-22 10:46
  • 61.07MB
  • 下载

人脸关键点定位.Face Alignment by Coarse-to-Fine Shape Searching 算法源码详解(上)

论文的基础依然是SDM。 核心创新之处是:每次迭代不是简单地用回归更新一个形状(解空间中的一个点),而是更新解空间中的一个区域。 听来简洁,但论文的干货部分讳莫如深,看得人云山雾罩。好在作者在网页上给出了源码,梳理之后才能明白到底是咋做的。 本文首先根据源码详细介绍算法,下半篇逐行解说源码。
  • shenxiaolu1984
  • shenxiaolu1984
  • 2015-11-26 22:04
  • 4226
    个人资料
    • 访问:361109次
    • 积分:5260
    • 等级:
    • 排名:第6187名
    • 原创:42篇
    • 转载:751篇
    • 译文:9篇
    • 评论:12条