人脸识别Dlib——68个特征点

本文介绍了如何使用Dlib库进行人脸识别,特别是提取68个特征点。通过示例代码展示了如何处理图片和视频中的人脸,实现了人脸特征的动态监测。在实验中,作者省略了人脸框,但提供了启用它的选项。
摘要由CSDN通过智能技术生成

前面说了怎么打开摄像头框出人脸,接下来学习了一下人脸的68个特征点

直接代码

import dlib
import cv2

# 与人脸检测相同,使用dlib自带的frontal_face_detector作为人脸检测器
detector = dlib.get_frontal_face_detector()

# 使用官方提供的模型构建特征提取器
predictor = dlib.shape_predictor('E:data/shape_predictor_68_face_landmarks.dat/shape_predictor_68_face_landmarks.dat')
# cv2读取图片
img = cv2.imread("D:/2.0/progect/my_faces0/103.jpg")

# 与人脸检测程序相同,使用detector进行人脸检测 dets为返回的结果
dets = detector(img, 1)
# 使用enumerate 函数遍历序列中的元素以及它们的下标
# 下标k即为人脸序号
# left:人脸左边距离图片左边界的距离 ;right:人脸右边距离图片左边界的距离
# top:人脸上边距离图片上边界的距离 ;bottom:人脸下边距离图片上边界的距离
for k, d in enumerate(dets):
    print("dets{}".format(d))
    print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
        k, d.left(), d.top(), d.right(), d.bottom()))

    # 使用predictor进行人脸关键点识别 shape为返回的结果
    shape = predictor(img, d)
    # 获取第一个和第二个点的坐标&
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值