递归二叉树遍历

转载 2015年07月06日 17:12:47

二叉树是一种非常重要的数据结构,很多其他数据机构都是基于二叉树的基础演变过来的。二叉树有前、中、后三种遍历方式,因为树的本身就是用递归定义的,因此采用递归的方法实现三种遍历,不仅代码简洁且容易理解,但其开销也比较大,而若采用非递归方法实现三种遍历,则要用栈来模拟实现(递归也是用栈实现的)。下面先简要介绍三种遍历方式的递归实现,再详细介绍三种遍历方式的非递归实现。


typedef struct BTree

{

     int data;

     struct BTree* pLchild;

     struct BTree* pRchild;

}BTree,*pBTree;

一、三种遍历方式的递归实现(比较简单,这里不详细讲解)


1、先序遍历——按照“根节点-左孩子-右孩子”的顺序进行访问。

void pre_traverse(BTree pTree)
{
	if(pTree)
	{
		printf("%c ",pTree->data);
		if(pTree->pLchild)
			pre_traverse(pTree->pLchild);
		if(pTree->pRchild)
			pre_traverse(pTree->pRchild);	
	}
}

    2、中序遍历——按照“左孩子-根节点-右孩子”的顺序进行访问。

void in_traverse(BTree pTree)
{
	if(pTree)
	{
		if(pTree->pLchild)
			in_traverse(pTree->pLchild);
		printf("%c ",pTree->data);
		if(pTree->pRchild)
			in_traverse(pTree->pRchild);	
	}
}

    3、后序遍历——按照“左孩子-右孩子-根节点”的顺序进行访问。

void beh_traverse(BTree pTree)
{
	if(pTree)
	{
		if(pTree->pLchild)
			beh_traverse(pTree->pLchild);
		if(pTree->pRchild)
			beh_traverse(pTree->pRchild);	
		printf("%c ",pTree->data);
}

    二、三种遍历方式的非递归实现

    为了便于理解,这里以下图的二叉树为例,分析二叉树的三种遍历方式的实现过程。


          1、前序遍历的非递归实现 

根据先序遍历的顺序,先访问根节点,再访问左子树,后访问右子树,而对于每个子树来说,又按照同样的访问顺序进行遍历,上图的先序遍历顺序为:ABDECF。非递归的实现思路如下:

对于任一节点P

1)输出节点P,然后将其入栈,再看P的左孩子是否为空;

2)P的左孩子不为空,则置P的左孩子为当前节点,重复1)的操作;

3)P的左孩子为空,则将栈顶节点出栈,但不输出,并将出栈节点的右孩子置为当前节点,看其是否为空;

4)若不为空,则循环至1)操作;

5)如果为空,则继续出栈,但不输出,同时将出栈节点的右孩子置为当前节点,看其是否为空,重复4)和5)操作;

6)直到当前节点PNULL并且栈空,遍历结束。

   

   下面以上图为例详细分析其先序遍历的非递归实现过程:

首先,从根节点A开始,根据操作1),输出A,并将其入栈,由于A的左孩子不为空,根据操作2),将B置为当前节点,再根据操作1),将B输出,并将其入栈,由于B的左孩子也不为空,根据操作2),将D置为当前节点,再根据操作1),输出D,并将其入栈,此时输出序列为ABD

由于D的左孩子为空,根据操作3),将栈顶节点D出栈,但不输出,并将其右孩子置为当前节点;

由于D的右孩子为空,根据操作5),继续将栈顶节点B出栈,但不输出,并将其右孩子置为当前节点;

由于B的右孩子E不为空,根据操作1),输出E,并将其入栈,此时输出序列为:ABDE

由于E的左孩子为空,根据操作3),将栈顶节点E出栈,但不输出,并将其右孩子置为当前节点;

由于E的右孩子为空,根据操作5),继续将栈顶节点A出栈,但不输出,并将其右孩子置为当前节点;

由于A的右孩子C不为空,根据操作1),输出C,并将其入栈,此时输出序列为:ABDEC

由于A的左孩子F不为空,根据操作2),则将F置为当前节点,再根据操作1),输出F,并将其入栈,此时输出序列为:ABDECF

由于F的左孩子为空,根据操作3),将栈顶节点F出栈,但不输出,并将其右孩子置为当前节点;

由于F的右孩子为空,根据操作5),继续将栈顶元素C出栈,但不输出,并将其右孩子置为当前节点;

此时栈空,且C的右孩子为NULL,因此遍历结束。

   根据以上思路,前序遍历的非递归实现代码如下:

void pre_traverse(BTree pTree)
{
	PSTACK stack = create_stack();  //创建一个空栈
	BTree node_pop;                 //用来保存出栈节点
	BTree pCur = pTree;             //定义用来指向当前访问的节点的指针

	//直到当前节点pCur为NULL且栈空时,循环结束
	while(pCur || !is_empty(stack))
	{
		//从根节点开始,输出当前节点,并将其入栈,
		//同时置其左孩子为当前节点,直至其没有左孩子,及当前节点为NULL
		printf("%c ", pCur->data);
		push_stack(stack,pCur);
		pCur = pCur->pLchild;
		//如果当前节点pCur为NULL且栈不空,则将栈顶节点出栈,
		//同时置其右孩子为当前节点,循环判断,直至pCur不为空
		while(!pCur && !is_empty(stack))
		{
			pCur = getTop(stack);
			pop_stack(stack,&node_pop);
			pCur = pCur->pRchild;			
		}
	}
}


   2、中序遍历的非递归实现

根据中序遍历的顺序,先访问左子树,再访问根节点,后访问右子树,而对于每个子树来说,又按照同样的访问顺序进行遍历,上图的中序遍历顺序为:DBEAFC。非递归的实现思路如下:

对于任一节点P

1)P的左孩子不为空,则将P入栈并将P的左孩子置为当前节点,然后再对当前节点进行相同的处理;

2)P的左孩子为空,则输出P节点,而后将P的右孩子置为当前节点,看其是否为空;

3)若不为空,则重复1)和2)的操作;

4)若为空,则执行出栈操作,输出栈顶节点,并将出栈的节点的右孩子置为当前节点,看起是否为空,重复3)和4)的操作;

5)直到当前节点PNULL并且栈为空,则遍历结束。

   下面以上图为例详细分析其中序遍历的非递归实现过程:

首先,从根节点A开始,A的左孩子不为空,根据操作1)将A入栈,接着将B置为当前节点,B的左孩子也不为空,根据操作1),将B也入栈,接着将D置为当前节点,由于D的左子树为空,根据操作2),输出D

由于D的右孩子也为空,根据操作4),执行出栈操作,将栈顶结点B出栈,并将B置为当前节点,此时输出序列为DB

由于B的右孩子不为空,根据操作3),将其右孩子E置为当前节点,由于E的左孩子为空,根据操作1),输出E,此时输出序列为DBE

由于E的右孩子为空,根据操作4),执行出栈操作,将栈顶节点A出栈,并将节点A置为当前节点,此时输出序列为DBEA

此时栈为空,但当前节点A的右孩子并不为NULL,继续执行,由于A的右孩子不为空,根据操作3),将其右孩子C置为当前节点,由于C的左孩子不为空,根据操作1),将C入栈,将其左孩子F置为当前节点,由于F的左孩子为空,根据操作2),输出F,此时输出序列为:DBEAF

由于F的右孩子也为空,根据操作4),执行出栈操作,将栈顶元素C出栈,并将其置为当前节点,此时的输出序列为:DBEAFC

由于C的右孩子为NULL,且此时栈空,根据操作5),遍历结束。


根据以上思路,中序遍历的非递归实现代码如下:

void in_traverse(BTree pTree)
{
	PSTACK stack = create_stack();  //创建一个空栈
	BTree node_pop;                 //用来保存出栈节点
	BTree pCur = pTree;             //定义指向当前访问的节点的指针

	//直到当前节点pCur为NULL且栈空时,循环结束
	while(pCur || !is_empty(stack))
	{
		if(pCur->pLchild)
		{
			//如果pCur的左孩子不为空,则将其入栈,并置其左孩子为当前节点
			push_stack(stack,pCur);
			pCur = pCur->pLchild;
		}
		else
		{
			//如果pCur的左孩子为空,则输出pCur节点,并将其右孩子设为当前节点,看其是否为空
			printf("%c ", pCur->data);
			pCur = pCur->pRchild;
			//如果为空,且栈不空,则将栈顶节点出栈,并输出该节点,
			//同时将它的右孩子设为当前节点,继续判断,直到当前节点不为空
			while(!pCur && !is_empty(stack))
			{
				pCur = getTop(stack);
				printf("%c ",pCur->data);	
				pop_stack(stack,&node_pop);
				pCur = pCur->pRchild;
			}
		}
	}
}

  
3、后序遍历的非递归实现

根据后序遍历的顺序,先访问左子树,再访问右子树,后访问根节点,而对于每个子树来说,又按照同样的访问顺序进行遍历,上图的后序遍历顺序为:DEBFCA。后序遍历的非递归的实现相对来说要难一些,要保证根节点在左子树和右子树被访问后才能访问,思路如下:

对于任一节点P

1)先将节点P入栈;

2)P不存在左孩子和右孩子,或者P存在左孩子或右孩子,但左右孩子已经被输出,则可以直接输出节点P,并将其出栈,将出栈节点P标记为上一个输出的节点,再将此时的栈顶结点设为当前节点;

3)若不满足2)中的条件,则将P的右孩子和左孩子依次入栈,当前节点重新置为栈顶结点,之后重复操作2);

4)直到栈空,遍历结束。

   下面以上图为例详细分析其后序遍历的非递归实现过程:

首先,设置两个指针:Cur指针指向当前访问的节点,它一直指向栈顶节点,每次出栈一个节点后,将其重新置为栈顶结点,Pre节点指向上一个访问的节点;

Cur首先指向根节点APre先设为NULL,由于A存在左孩子和右孩子,根据操作3),先将右孩子C入栈,再将左孩子B入栈,Cur改为指向栈顶结点B

由于B的也有左孩子和右孩子,根据操作3),将ED依次入栈,Cur改为指向栈顶结点D

由于D没有左孩子,也没有右孩子,根据操作2),直接输出D,并将其出栈,将Pre指向DCur指向栈顶结点E,此时输出序列为:D

由于E也没有左右孩子,根据操作2),输出E,并将其出栈,将Pre指向ECur指向栈顶结点B,此时输出序列为:DE

由于B的左右孩子已经被输出,即满足条件Pre==Cur->lchildPre==Cur->rchild,根据操作2),输出B,并将其出栈,将Pre指向BCur指向栈顶结点C,此时输出序列为:DEB

由于C有左孩子,根据操作3),将其入栈,Cur指向栈顶节点F

由于F没有左右孩子,根据操作2),输出F,并将其出栈,将Pre指向FCur指向栈顶结点C,此时输出序列为:DEBF

由于C的左孩子已经被输出,即满足Pre==Cur->lchild,根据操作2),输出C,并将其出栈,将Pre指向CCur指向栈顶结点A,此时输出序列为:DEBFC

由于A的左右孩子已经被输出,根据操作2),输出A,并将其出栈,此时输出序列为:DEBFCA

此时栈空,遍历结束。

根据以上思路,后序遍历的非递归实现代码如下:

void beh_traverse(BTree pTree)
{
	PSTACK stack = create_stack();  //创建一个空栈
	BTree node_pop;          //用来保存出栈的节点
	BTree pCur;              //定义指针,指向当前节点
	BTree pPre = NULL;       //定义指针,指向上一各访问的节点

	//先将树的根节点入栈
	push_stack(stack,pTree);  
	//直到栈空时,结束循环
	while(!is_empty(stack))
	{
		pCur = getTop(stack);   //当前节点置为栈顶节点
		if((pCur->pLchild==NULL && pCur->pRchild==NULL) || 
			(pPre!=NULL && (pCur->pLchild==pPre || pCur->pRchild==pPre)))
		{
			//如果当前节点没有左右孩子,或者有左孩子或有孩子,但已经被访问输出,
			//则直接输出该节点,将其出栈,将其设为上一个访问的节点
			printf("%c ", pCur->data);
			pop_stack(stack,&node_pop);
			pPre = pCur;
		}
		else
		{
			//如果不满足上面两种情况,则将其右孩子左孩子依次入栈
			if(pCur->pRchild != NULL)
				push_stack(stack,pCur->pRchild);
			if(pCur->pLchild != NULL)
				push_stack(stack,pCur->pLchild);
		}
	}
}

相关文章推荐

二叉树遍历(递归与迭代)

二叉树遍历算法分为前序(PreOredr),中序(InOrder),后序(PostOrder)遍历。并且可以设计递归型或者迭代型算法。         本文二叉树定义为: struct Binary...

二叉树遍历的递归实现

二叉树有三种遍历方式,分别是中根序,先根序和后根序。 中根序的执行顺序:左孩子——>根节点——>右孩子 先根序的执行顺序:根节点——>左孩子——>右孩子 后根序的执行顺序:左孩子——>右孩子——>根节...

第十周项目2-二叉树遍历的递归运算

问题描述及代码 /*   Copyright (c)2015,烟台大学计算机与控制工程学院   All rights reserved.   文件名称:二叉树遍历的递归算法.cpp   作    者...

二叉树遍历(非递归实现--栈实现)

和上一篇一样先建了一颗树用于实验:实现了三种遍历方法:先序遍历,中序遍历,后序遍历。以以上的树为例输出的结果应为:A, B, D, C, E, F; B, D, A, E, C, F; D, B, E...

二叉树遍历-前序中序(非递归)

前序遍历、中序遍历(非递归):需要借助一个栈结构 栈结构的头文件:构造一个栈结构,实现栈的基本功能函数入栈、出栈、栈顶元素、判断栈空等函数 二叉树的头文件不变(详情看上一篇层次递...

二叉树遍历 非递归 C++实现

二叉树的非递归遍历 二叉树是一种非常重要的数据结构,很多其它数据结构都是基于二叉树的基础演变而来的。对于二叉树,有前序、中序以及后序三种遍历方法。因为树的定义本身就是递归定义,因此采用递归的方法去实...

数据结构与算法学习笔记——二叉树遍历(一)(递归、迭代)

最近学习二叉树相关的内容,个人认为其中最重要的应该就是二叉树的遍历了,包括先序,中序,后续。通常二叉树的遍历有三种方法:递归、迭代和Morris遍历。递归应该是最容易理解了, Morris遍历最难理解...

二叉树遍历的非递归实现 java版本

前序非递归遍历基本思想: 首先从访问节点,访问完后将节点入栈,如果节点有左孩子,则变量指向左孩子重复以上顺序当左孩子为空时,则出栈,获得栈顶元素的右孩子(所有入栈的元素及其左孩子元素都是被访问过...

二叉树遍历的非递归实现(java版)

在前面的这篇文章中我写了二叉树遍历的递归实现,在这篇文章中我将讲述下二叉树的非递归实现。大多数的递归问题的非递归算法,需要用栈来消除递归。栈是一种存储容器,同时又是一种控制结构,栈先进先出的控制结构,...

二叉树遍历及查找、统计个数、比较、求深度的递归实现

树形结构是一类重要的非线性数据结构,其中以树和二叉树最为常用。 二叉树是每个结点最多有两个子树的有序树。通常子树的根被称作“左子树”(left subtree)和“右子树”(righ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:递归二叉树遍历
举报原因:
原因补充:

(最多只允许输入30个字)