关闭

Less Time, More profit

132人阅读 评论(0) 收藏 举报
分类:

Less Time, More profit

这里写图片描述
.
.
题目是挺裸的网络流,也算例题了吧
源点和商铺连一条流量为收益的边,汇点和工厂连一条流量为工厂投资的花费。因为最大流等于最小割,对于每一个商铺,要么把商铺利益割掉,要么把工厂花费割掉,最后的收益为所有商铺的收益减去最小割就是最大利润。对于时间,我是利用了二分保证最小。
.
.

#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <math.h>
#include <algorithm>
#include <string.h>

const int maxlongint=1 << 31 -1;

bool flag[500], all;
int i, j, k, n, m, tot, ans, s, t, sum, l;
int a[500001], b[500001], next[500001];
int last[505], x[505], y[505], r[505], w[505], count[505], cur[505], fa[505], dist[505], dat[505];

struct Node1 {
    int pro;
    int num;
    int index[500];
}bb[500];

struct Node{
    int pay, t, index;
    bool operator<(Node &other) {
        if (t <= other.t) return true;
        return false;
    }
}aa[500];

int insert(int x, int y, int z) {
     tot++;
     a[tot] = y;
     b[tot] = z;
     next[tot] = last[x];
     last[x] = tot;
     tot++;
     a[tot] = x;
     b[tot] = 0;
     next[tot] = last[y];
     last[y] = tot;
}

int min(int x, int y) {
     if (x < y) return x ;
     else return y;
}

int sap(int s, int t) {
     int i, j, k, x, p, sum;
     count[0] = 1;
     count[1] = t-1;
     for (i = 1; i <= t-1; i++) dist[i] = 1;
     dist[t] = 0;
     for (i = 1; i <= t; i++) {
          cur[i] = last[i];
          fa[i] = 0;
          dat[i] = 0;
     }
     dat[s] = maxlongint;
     x = s; sum = 0;
     while (1) {
          k = cur[x];
          while (k > 0) {
               if ((b[k] > 0)&&(dist[a[k]] == dist[x]-1)) break;
               k = next[k];
          }

          if (k > 0) {
               cur[x] = k;
               fa[a[k]] = k;
               dat[a[k]] = min(dat[x],b[k]);
               x = a[k];
               if (x == t) {
                    sum = sum+dat[x];
                    while (x!=s) {
                         b[fa[x]] = b[fa[x]]-dat[t];
                         b[fa[x] xor 1] = b[fa[x] xor 1]+dat[t];
                         x = a[fa[x] xor 1];
                    }
               }
          } else {
               count[dist[x]]--;
               if (count[dist[x]] == 0) return sum;
               k = last[x];
               dist[x] = t+1;
               while (k!=0) {
                    if ((b[k] > 0)&&(dist[a[k]]+1 < dist[x])) {
                         dist[x] = dist[a[k]]+1;
                         cur[x] = k;
                    }
                    k = next[k];
               }
               count[dist[x]]++;
               if (dist[s] > t) return sum;
               if (x != s) x = a[fa[x] xor 1];
          }
     }
}

int main() {
    /*
    important
    s better start from 1
    tot start from 1!!

    */
    int tt;
    scanf("%d", &tt);
    for (int cases = 1; cases <= tt; cases++) {
        printf("Case #%d: ", cases);
        scanf("%d %d %d", &n, &m, &l);
        for (int i = 1; i <= n; i++) {
            scanf("%d %d", &aa[i].pay, &aa[i].t);
            aa[i].index = i;
        }
        std::sort(aa+1, aa+1+n);
        for (int i = 1; i <= m; i++) {
            scanf("%d %d", &bb[i].pro, &bb[i].num);
            for (int j = 1; j <= bb[i].num; j++)
                scanf("%d", &bb[i].index[j]);
        }
        all = false;
        for (int i = 1; i <= n; i++) if (i == n || aa[i].t != aa[i+1].t){
            memset(last, 0, sizeof(last));
            memset(b, 0, sizeof(b));
            memset(a, 0, sizeof(a));
            memset(flag, 0, sizeof(flag));
            tot = 1;
            for (int j = 1; j <= i; j++) {
                insert(1, aa[j].index+1, aa[j].pay);
                flag[aa[j].index] = true;
            }
            sum = 0;
            for (int j = 1; j <= m; j++) {
                bool ok = true;
                for (int k = 1; k <=bb[j].num; k++) if (!flag[bb[j].index[k]]) {
                    ok = false; break;
                }
                if (!ok) continue;
                for (int k = 1; k <= bb[j].num; k++) {
                    insert(1+bb[j].index[k], 1+n+j, 1000000);
                }
                insert(1+n+j, 1+n+m+1, bb[j].pro);
                sum = sum+bb[j].pro;
            }
            sum = sum-sap(1, 1+n+m+1);
            if (sum >= l) {
                printf("%d %d\n", aa[i].t, sum);
                all = true;
                break;
            }
        }
        if (!all) printf("impossible\n");
    }

}
0
0
查看评论

HDU 5855 Less Time, More profit(最大权闭合图)

题意就是有n个工厂,m个商店题意就是有n个工厂,m个商店 每个工厂有建造时间ti,花费payi每个工厂有建造时间t_i,花费pay_i 每个商店和k个工厂有关,如果这k个工厂都建造了,那么能获利proi每个商店和k个工厂有关,如果这k个工厂都建造了,那么能获利pro_i 问你求收益(∑pro−...
  • Miracle_ma
  • Miracle_ma
  • 2016-08-16 17:38
  • 629

HDU 5855 Less Time, More profit

题目链接:acm.hdu.edu.cn/showproblem.php?pid=5855个人感想: 当时看错题意了,,尼玛一直往贪心想,然后就GG了,贪心也可以过,只是因为数据太水了.. 在这道题中并没有贪心策略可以选择呢..然后出题解之后,我内心很崩溃,签到题居然是网络流,,简直疯了…. 不过...
  • zzz805
  • zzz805
  • 2016-08-17 21:09
  • 373

HDU-5855 Less Time, More profit(最大权闭合图+二分)

The city planners plan to build N plants in the city which has M shops. Each shop needs products from some plants to make profit of proiproi units. ...
  • yo_bc
  • yo_bc
  • 2017-09-14 10:22
  • 76

HDU 5855 Less Time, More profit(网络流)

Problem Description The city planners plan to build N plants in the city which has M shops. Each shop needs products from some plants to make prof...
  • baidu_27438681
  • baidu_27438681
  • 2016-08-17 15:39
  • 259

hdoj 5855 Less Time, More profit 【最大权闭合图】

hdoj 5855 Less Time, More profit 题意:nn个工厂,mm个商店,第ii个商店在若干个工厂的支持下可以获利pro[i]pro[i],第ii个工厂需要投资pay[i]pay[i]且花费时间T[i]T[i],现在要求利润不能少于LL,问你最小的tt。 就是一个裸的最大权...
  • chenzhenyu123456
  • chenzhenyu123456
  • 2016-08-17 22:16
  • 322

HDU5855 Less Time, More profit(最大权闭合图)

N个工厂,给出每个工厂建成所需时间t及花费pay(可同时建)。M个商店,在给定的几个工厂建好的前提下,每个商店开张可以获利pro(一次性)。求获利L最少需要的天数T,以及T天的最大获利P。
  • Just_Lm
  • Just_Lm
  • 2017-01-22 16:15
  • 150

2016多校训练Contest9: 1012 Less Time, More profit hdu5855

Problem Description The city planners plan to build N plants in the city which has M shops. Each shop needs products from some plants to make profit...
  • lqybzx
  • lqybzx
  • 2016-08-17 00:16
  • 372

linux中cat、more、less命令区别详解

众所周知linux中命令cat、more、less均可用来查看文件内容,主要区别有: cat是一次性显示整个文件的内容,还可以将多个文件连接起来显示,它常与重定向符号配合使用,适用于文件内容少的情况; more和less一般用于显示文件内容超过一屏的内容,并且提供翻页的功能。more比cat强大,提...
  • xyw_Eliot
  • xyw_Eliot
  • 2013-11-21 16:58
  • 34794

初学linux命令-more、less

命令五 名称:more   命令功能:用于查看纯文本文件(较长的) 语法:more 选项() [文件] 常用的选项(参数): -数字      功能:预先显示的行数(默认为一页); -d        &#...
  • lyt_7cs1dn9
  • lyt_7cs1dn9
  • 2016-05-26 13:06
  • 752

cat/more/less命令解释与区别

cat 命令是 concatenate 的缩写,表示合并文件,命令格式如下: $ cat  选项  文件名 功能: 1. 合并文件   例如 :   $ cat  test1.txt   test2.txt&#...
  • u010566813
  • u010566813
  • 2015-01-02 20:27
  • 798
    个人资料
    • 访问:24596次
    • 积分:2367
    • 等级:
    • 排名:第18555名
    • 原创:224篇
    • 转载:0篇
    • 译文:0篇
    • 评论:8条
    文章分类
    最新评论