【网络流24题】魔术球问题

该博客介绍了一种利用网络流算法解决魔术球问题的方法。在给定的n根柱子中,每两相邻球编号之和必须为完全平方数。博主通过建立网络流模型,求解在n根柱子上最多可以放置多少个球,并给出了相应的算法思路和代码实现。
摘要由CSDN通过智能技术生成

Description

假设有 n根柱子,现要按下述规则在这 n根柱子中依次放入编号为 1,2,3,…的球。

(1)每次只能在某根柱子的最上面放球。

(2)在同一根柱子中,任何 2个相邻球的编号之和为完全平方数。

试设计一个算法,计算出在 n根柱子上最多能放多少个球。例如,在 4根柱子上最多可放 11个球。

对于给定的 n,计算在 n根柱子上最多能放多少个球。

Input

文件第 1行有 1个正整数 n,表示柱子数。

Output

程序运行结束时,将 n根柱子上最多能放的球数以及相应的放置方案输出。文件的第一行是球数。接下来的 n行,每行是一根柱子上的球的编号。

Sample Input

4

Sample Output

11
1 8
2 7 9
3 6 10
4 5 11

HINT

n<60
题解

网络流最大流
枚举答案s,在图中建节点1,2,….,s,并将每个节点拆成两个点,一个连接原点,一个连接汇点,对于每一个i< j,如果存在i+j是一个平方数,那么就将i与原点连接的点和j与汇点连接的点建边。每次求一遍最大流a,如果a-1==n,那么s-1即为所求解。

code
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值