pengwill97
码龄6年
  • 369,845
    被访问
  • 496
    原创
  • 929,526
    排名
  • 302
    粉丝
  • 5
    铁粉
关注
提问 私信

个人简介:C.S Master

  • 加入CSDN时间: 2016-08-06
博客简介:

Pengwill's Blog

博客描述:
一百年太短,只争朝夕
查看详细资料
个人成就
  • 获得401次点赞
  • 内容获得129次评论
  • 获得1,053次收藏
创作历程
  • 18篇
    2020年
  • 10篇
    2019年
  • 221篇
    2018年
  • 192篇
    2017年
  • 60篇
    2016年
成就勋章
TA的专栏
  • 知识图谱
    2篇
  • 算法学习
    23篇
  • 论文笔记
    1篇
  • Python之禅
    1篇
  • 深度学习/深度学习框架
    8篇
  • 自然语言处理
    5篇
  • 机器学习
    3篇
兴趣领域 设置
  • 人工智能
    深度学习神经网络自然语言处理
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Microsoft Office Word 2016关闭时无响应卡顿的解决方法

1. 在控制面板中找到Microsoft office2. 右键单击选择更改3. 尝试 Quick Rapair4. 等待修复如果Quick Rapair修复完成还没有解决问题,选择Online repair,再尝试。
原创
发布博客 2020.07.27 ·
3153 阅读 ·
0 点赞 ·
0 评论

Deep Learning with Pytorch 中文简明笔记 第八章 Using convolutions to generalize

Deep Learning with Pytorch 中文简明笔记 第八章 Using convolutions to generalizePytorch作为深度学习框架的后起之秀,凭借其简单的API和简洁的文档,收到了越来越多人的关注和喜爱。本文主要总结了 Deep Learning with Pytorch 一书第八章[Using convolutions to generalize]的主要内容,并加以简单明了的解释,作为自己的学习记录,也供大家学习和参考。文章目录Deep Learning wit
原创
发布博客 2020.07.27 ·
352 阅读 ·
0 点赞 ·
1 评论

Deep Learning with Pytorch 中文简明笔记 第七章 Telling birds from airplanes: Learning from images

Deep Learning with Pytorch 中文简明笔记 第七章 Telling birds from airplanes: Learning from imagesPytorch作为深度学习框架的后起之秀,凭借其简单的API和简洁的文档,收到了越来越多人的关注和喜爱。本文主要总结了 Deep Learning with Pytorch 一书第七章[Telling birds from airplanes: Learning from images]的主要内容,并加以简单明了的解释,作为自己的学
原创
发布博客 2020.07.25 ·
313 阅读 ·
0 点赞 ·
0 评论

Deep Learning with Pytorch 中文简明笔记 第六章 Using a neural network to fit the data

Deep Learning with Pytorch 中文简明笔记 第六章 Using a neural network to fit the dataPytorch作为深度学习框架的后起之秀,凭借其简单的API和简洁的文档,收到了越来越多人的关注和喜爱。本文主要总结了 Deep Learning with Pytorch 一书第六章[Using a neural network to fit the data]的主要内容,并加以简单明了的解释,作为自己的学习记录,也供大家学习和参考。文章目录Deep
原创
发布博客 2020.07.25 ·
277 阅读 ·
1 点赞 ·
0 评论

Deep Learning with Pytorch 中文简明笔记 第五章 The mechanics of learning

Pytorch作为深度学习框架的后起之秀,凭借其简单的API和简洁的文档,收到了越来越多人的关注和喜爱。本文主要总结了 Deep Learning with Pytorch 一书第五章[The mechanics of learning]的主要内容,并加以简单明了的解释,作为自己的学习记录,也供大家学习和参考。文章目录主要内容1. 一个永恒的建模课程2. 学习就是参数估计3. 我们所需要的是更小的误差4. 沿着梯度下降5. Pytorch的自动求导和反向传播5.1 自动计算梯度5.2 优化器5.3 训练和
原创
发布博客 2020.07.24 ·
382 阅读 ·
0 点赞 ·
0 评论

Deep Learning with Pytorch 中文简明笔记 第四章 Real-world data representation using tensors

Deep Learning with Pytorch 中文简明笔记 第四章 Real-world data representation using tensorsPytorch作为深度学习框架的后起之秀,凭借其简单的API和简洁的文档,收到了越来越多人的关注和喜爱。本文主要总结了 Deep Learning with Pytorch 一书第四章[Real-world data representation using tensors]的主要内容,并加以简单明了的解释,作为自己的学习记录,也供大家学习和参
原创
发布博客 2020.07.24 ·
230 阅读 ·
0 点赞 ·
0 评论

Deep Learning with Pytorch 中文简明笔记 第三章 It starts with a tensor

Deep Learning with Pytorch 中文简明笔记 第三章 TensorPytorch作为深度学习框架的后起之秀,凭借其简单的API和简洁的文档,收到了越来越多人的关注和喜爱。本文主要总结了 Deep Learning with Pytorch 一书第三章[It starts with a tensor]的主要内容,并加以简单明了的解释,作为自己的学习记录,也供大家学习和参考。文章目录Deep Learning with Pytorch 中文简明笔记 第三章 Tensor1. 主要内容2
原创
发布博客 2020.07.22 ·
304 阅读 ·
0 点赞 ·
0 评论

知识图谱表示学习 TransH: Knowledge Graph Embedding by Translating on Hyperplanes

知识图谱表示学习 TransH: Knowledge Graph Embedding by Translating on Hyperplanes表示学习是深度学习的基础,将数据用更有效的方式表达出来,才能让深度学习发挥出更强大的作用。表示学习避免了手动提取数据特征的繁琐,允许计算机学习特征的同时,也学习如何提取特征。尽管举例基于翻译(translation)的知识图谱表示学习已经过去了五六年的时间,但是仍不可忽略其重要意义。本文聚焦于TransH模型。1. 摘要和引言TransE模型简单有效的方法,在
原创
发布博客 2020.06.26 ·
507 阅读 ·
0 点赞 ·
0 评论

知识图谱表示学习 TransE: Translating Embeddings for Modeling Multi-relational Data

知识图谱表示学习 TransE: Translating Embeddings for Modeling Multi-relational Data表示学习是深度学习的基础,将数据用更有效的方式表达出来,才能让深度学习发挥出更强大的作用。表示学习避免了手动提取数据特征的繁琐,允许计算机学习特征的同时,也学习如何提取特征。尽管举例基于翻译(translation)的知识图谱表示学习已经过去了五六年的时间,但是仍不可忽略其重要意义。本文聚焦于TransE模型。1. 引言多元关系数据(Multi-relat
原创
发布博客 2020.06.24 ·
1210 阅读 ·
0 点赞 ·
1 评论

CS224n 深度自然语言处理(四) Note - Backpropagation and computation graphs

本文为笔者学习CS224N所做笔记,所包含内容不限于课程课件和讲义,还包括笔者对机器学习、神经网络的一些理解。所写内容难免有难以理解的地方,甚至可能有错误。如您在阅读中有疑惑或者建议,还望留言指正。笔者不胜感激!在本章中,将着重讨论以下内容:如何更新神经网络参数?以何种形式保存更新结构?搭建和训练神经网络的技巧.梯度和导数上一章提到,应该最小化损失函数。损失函数的参数是神经网络参数,由于梯度的方向是函数上升最快的方向,故若想最小化损失函数,应该按负梯度方向更新参数,即梯度下降。而为了求解损失
原创
发布博客 2020.06.05 ·
225 阅读 ·
0 点赞 ·
0 评论

TensorFlow出现Found Inf or NaN global norm的排查和解决办法

在训练神经网络的时候,由于一些原因会出现NaN或者Inf,致使训练终止。在查阅相关资料之后,并且结合我出现的问题,做了一些总结。出现的代码在TensorFlow 1.12.2版本可正常执行。出现问题的原因出现NaN或者Inf的原因一般可分为以下三种输入数据有错出现了运算错误,如除数为零,log0等梯度爆炸输入数据有错训练数据可能包含脏数据,在数据清洗时没有清洗干净,导致错误数据输入进模型。首先可以在输入模型前,使用np.any(np.isnan(data))来判断数据是否由nan。若没有,
原创
发布博客 2020.05.29 ·
2891 阅读 ·
4 点赞 ·
1 评论

CS224n 深度自然语言处理(三) Note - Word Window Classification, Neural Networks

本文为笔者学习CS224N所做笔记,所包含内容不限于课程课件和讲义,还包括笔者对机器学习、神经网络的一些理解。所写内容难免有难以理解的地方,甚至可能有错误。如您在阅读中有疑惑或者建议,还望留言指正。笔者不胜感激!分类问题一般而言,训练数据由训练样本{xi,yi}i=1N\{x_i,y_i\}^{N}_{i=1}{xi​,yi​}i=1N​组成。xix_ixi​表示输入(假定每个样本的维度为ddd),yiy_iyi​表示类别(假定有CCC个类别)。线性分类器在传统的机器学习方法中,对于训练样本,训练逻
原创
发布博客 2020.05.26 ·
280 阅读 ·
0 点赞 ·
0 评论

CS224n 深度自然语言处理(二) Note - Word Vectors 2 and Word Senses

文章目录Global Vectors for Word Representation(GloVe)Comparison with Previous MethodsCo-occurrence MatrixLeast Square ObjectiveConclusionEvaluation of Word VectorsInstrinsic EvalutionExtrinsic EvaluationI...
原创
发布博客 2020.04.14 ·
202 阅读 ·
0 点赞 ·
0 评论

algebra_2005_2006.zip

发布资源 2020.04.11 ·
zip

CS224n 深度自然语言处理(一) - Introduction and Word Vectors

单词的含义如何定义一个单词的意思?通过韦伯字典对于单词”meaning"的解释来看,有如下几点单词或者短语呈现的意思。人想要通过短语、符号表达的实际含义。文章、艺术作品呈现的想法。故最普通对meaning的理解,其实是表示符号(symbol)向想法(idea)的转换。如何在计算机中计算语义。可以使用,wordnet,一个包含同义词集合和词间关系的词库。但是WordNet仍有缺点...
原创
发布博客 2020.04.10 ·
248 阅读 ·
1 点赞 ·
0 评论

Deep-IRT: Make Deep Learning Based Knowledge Tracing Explainable Using Item Response Theory

Deep-IRT: Make Deep Learning Based Knowledge Tracing Explainable Using Item Response TheoryStudent Ability and Difficulty NetworksDKVMN\text{DKVMN}DKVMN的模型架构可以被很容易的增强,进一步提供其他的有意义的信息。首先,每个潜在知识点的状态可以被...
原创
发布博客 2020.01.22 ·
780 阅读 ·
1 点赞 ·
0 评论

Dynamic Key-Value Memory Networks for knowledge Tracing

Dynamic Key-Value Memory Networks for knowledge TracingMemory-Augmented Neural NetworksMANN\text{MANN}MANN是一种用于多种NLP任务的网络结构,例如问答系统,自然语言翻译、单样本学习。典型的模型包括两部分:存储信息的记忆矩阵和和外界进行读写交换的控制器。读写操作通过attention\te...
原创
发布博客 2020.01.22 ·
995 阅读 ·
4 点赞 ·
1 评论

Python内置库collections使用集锦

collections中有以下类Class nameDescriptionnamedtuple用于创建具有命名字段的元组子类的工厂函数deque类似列表的容器,两端都有快速追加和弹出ChainMap类似于dict的类,用于创建多个映射的单个视图Counter用于计算可哈希对象的dict子类OrderedDict记住元素添加顺序的dict子类...
原创
发布博客 2020.01.05 ·
178 阅读 ·
2 点赞 ·
0 评论

Google Colab 挂载 Google Drive

Step1启动notebook,执行以下代码from google.colab import drivedrive.mount('/content/gdrive')在文本框中输入连接中的验证码Step2在左侧文件中查看目录结构,gdrive所在的目录是/content/gdriveStep3使用如下代码进入项目目录!lsimport osos.chdir('/conten...
原创
发布博客 2019.12.29 ·
893 阅读 ·
0 点赞 ·
0 评论

NLP(1) - 使用gensim训练Word2vec

文章目录Word2vec第三方库gensimnltk训练Word2vec语料库(corpus)预处理使用gensim训练读取Word2vecCode参考Word2vec在NLP中,想要处理文本,避不开的问题就是如何表示词。在Word2vec出现之前,词以one-hot形式的编码表示,即一个词由一个仅包含0或1的向量表示,出现的单词位置置为1,其余单词位置置为0。这样的编码方式有一些缺点,其中之...
原创
发布博客 2019.12.21 ·
316 阅读 ·
0 点赞 ·
0 评论
加载更多