自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Pengwill's Blog

一百年太短,只争朝夕

  • 博客(501)
  • 资源 (2)
  • 收藏
  • 关注

原创 Microsoft Office Word 2016关闭时无响应卡顿的解决方法

1. 在控制面板中找到Microsoft office2. 右键单击选择更改3. 尝试 Quick Rapair4. 等待修复如果Quick Rapair修复完成还没有解决问题,选择Online repair,再尝试。

2020-07-27 00:22:23 4653

原创 Deep Learning with Pytorch 中文简明笔记 第八章 Using convolutions to generalize

Deep Learning with Pytorch 中文简明笔记 第八章 Using convolutions to generalizePytorch作为深度学习框架的后起之秀,凭借其简单的API和简洁的文档,收到了越来越多人的关注和喜爱。本文主要总结了 Deep Learning with Pytorch 一书第八章[Using convolutions to generalize]的主要内容,并加以简单明了的解释,作为自己的学习记录,也供大家学习和参考。文章目录Deep Learning wit

2020-07-27 00:16:06 654 1

原创 Deep Learning with Pytorch 中文简明笔记 第七章 Telling birds from airplanes: Learning from images

Deep Learning with Pytorch 中文简明笔记 第七章 Telling birds from airplanes: Learning from imagesPytorch作为深度学习框架的后起之秀,凭借其简单的API和简洁的文档,收到了越来越多人的关注和喜爱。本文主要总结了 Deep Learning with Pytorch 一书第七章[Telling birds from airplanes: Learning from images]的主要内容,并加以简单明了的解释,作为自己的学

2020-07-25 18:05:48 685

原创 Deep Learning with Pytorch 中文简明笔记 第六章 Using a neural network to fit the data

Deep Learning with Pytorch 中文简明笔记 第六章 Using a neural network to fit the dataPytorch作为深度学习框架的后起之秀,凭借其简单的API和简洁的文档,收到了越来越多人的关注和喜爱。本文主要总结了 Deep Learning with Pytorch 一书第六章[Using a neural network to fit the data]的主要内容,并加以简单明了的解释,作为自己的学习记录,也供大家学习和参考。文章目录Deep

2020-07-25 15:58:57 639

原创 Deep Learning with Pytorch 中文简明笔记 第五章 The mechanics of learning

Pytorch作为深度学习框架的后起之秀,凭借其简单的API和简洁的文档,收到了越来越多人的关注和喜爱。本文主要总结了 Deep Learning with Pytorch 一书第五章[The mechanics of learning]的主要内容,并加以简单明了的解释,作为自己的学习记录,也供大家学习和参考。文章目录主要内容1. 一个永恒的建模课程2. 学习就是参数估计3. 我们所需要的是更小的误差4. 沿着梯度下降5. Pytorch的自动求导和反向传播5.1 自动计算梯度5.2 优化器5.3 训练和

2020-07-24 22:49:27 623

原创 Deep Learning with Pytorch 中文简明笔记 第四章 Real-world data representation using tensors

Deep Learning with Pytorch 中文简明笔记 第四章 Real-world data representation using tensorsPytorch作为深度学习框架的后起之秀,凭借其简单的API和简洁的文档,收到了越来越多人的关注和喜爱。本文主要总结了 Deep Learning with Pytorch 一书第四章[Real-world data representation using tensors]的主要内容,并加以简单明了的解释,作为自己的学习记录,也供大家学习和参

2020-07-24 18:27:50 478

原创 Deep Learning with Pytorch 中文简明笔记 第三章 It starts with a tensor

Deep Learning with Pytorch 中文简明笔记 第三章 TensorPytorch作为深度学习框架的后起之秀,凭借其简单的API和简洁的文档,收到了越来越多人的关注和喜爱。本文主要总结了 Deep Learning with Pytorch 一书第三章[It starts with a tensor]的主要内容,并加以简单明了的解释,作为自己的学习记录,也供大家学习和参考。文章目录Deep Learning with Pytorch 中文简明笔记 第三章 Tensor1. 主要内容2

2020-07-22 00:51:43 494

原创 知识图谱表示学习 TransH: Knowledge Graph Embedding by Translating on Hyperplanes

知识图谱表示学习 TransH: Knowledge Graph Embedding by Translating on Hyperplanes表示学习是深度学习的基础,将数据用更有效的方式表达出来,才能让深度学习发挥出更强大的作用。表示学习避免了手动提取数据特征的繁琐,允许计算机学习特征的同时,也学习如何提取特征。尽管举例基于翻译(translation)的知识图谱表示学习已经过去了五六年的时间,但是仍不可忽略其重要意义。本文聚焦于TransH模型。1. 摘要和引言TransE模型简单有效的方法,在

2020-06-26 22:00:56 1086

原创 知识图谱表示学习 TransE: Translating Embeddings for Modeling Multi-relational Data

知识图谱表示学习 TransE: Translating Embeddings for Modeling Multi-relational Data表示学习是深度学习的基础,将数据用更有效的方式表达出来,才能让深度学习发挥出更强大的作用。表示学习避免了手动提取数据特征的繁琐,允许计算机学习特征的同时,也学习如何提取特征。尽管举例基于翻译(translation)的知识图谱表示学习已经过去了五六年的时间,但是仍不可忽略其重要意义。本文聚焦于TransE模型。1. 引言多元关系数据(Multi-relat

2020-06-24 18:43:07 1962 1

原创 CS224n 深度自然语言处理(四) Note - Backpropagation and computation graphs

本文为笔者学习CS224N所做笔记,所包含内容不限于课程课件和讲义,还包括笔者对机器学习、神经网络的一些理解。所写内容难免有难以理解的地方,甚至可能有错误。如您在阅读中有疑惑或者建议,还望留言指正。笔者不胜感激!在本章中,将着重讨论以下内容:如何更新神经网络参数?以何种形式保存更新结构?搭建和训练神经网络的技巧.梯度和导数上一章提到,应该最小化损失函数。损失函数的参数是神经网络参数,由于梯度的方向是函数上升最快的方向,故若想最小化损失函数,应该按负梯度方向更新参数,即梯度下降。而为了求解损失

2020-06-05 00:47:30 390

原创 TensorFlow出现Found Inf or NaN global norm的排查和解决办法

在训练神经网络的时候,由于一些原因会出现NaN或者Inf,致使训练终止。在查阅相关资料之后,并且结合我出现的问题,做了一些总结。出现的代码在TensorFlow 1.12.2版本可正常执行。出现问题的原因出现NaN或者Inf的原因一般可分为以下三种输入数据有错出现了运算错误,如除数为零,log0等梯度爆炸输入数据有错训练数据可能包含脏数据,在数据清洗时没有清洗干净,导致错误数据输入进模型。首先可以在输入模型前,使用np.any(np.isnan(data))来判断数据是否由nan。若没有,

2020-05-29 00:42:22 4875 1

原创 CS224n 深度自然语言处理(三) Note - Word Window Classification, Neural Networks

本文为笔者学习CS224N所做笔记,所包含内容不限于课程课件和讲义,还包括笔者对机器学习、神经网络的一些理解。所写内容难免有难以理解的地方,甚至可能有错误。如您在阅读中有疑惑或者建议,还望留言指正。笔者不胜感激!分类问题一般而言,训练数据由训练样本{xi,yi}i=1N\{x_i,y_i\}^{N}_{i=1}{xi​,yi​}i=1N​组成。xix_ixi​表示输入(假定每个样本的维度为ddd),yiy_iyi​表示类别(假定有CCC个类别)。线性分类器在传统的机器学习方法中,对于训练样本,训练逻

2020-05-26 21:08:05 418

原创 数据结构实验5-哈夫曼编码

实验内容程序代码运行结果实验内容某报文中共出现abdeoy 等6个字符,各字符出现频度依次为12 6 4 1 2 8。要求:实现哈弗曼编码算法,对这6个字符求出各自的编码;实现哈弗曼译码算法,对给定的一组编码(110011111101110110),译出其对应的报文部分 。程序代码#include <iostream>#includ...

2020-04-14 18:25:52 2921 3

原创 CS224n 深度自然语言处理(二) Note - Word Vectors 2 and Word Senses

文章目录Global Vectors for Word Representation(GloVe)Comparison with Previous MethodsCo-occurrence MatrixLeast Square ObjectiveConclusionEvaluation of Word VectorsInstrinsic EvalutionExtrinsic EvaluationI...

2020-04-14 18:19:44 363

原创 CS224n 深度自然语言处理(一) - Introduction and Word Vectors

单词的含义如何定义一个单词的意思?通过韦伯字典对于单词”meaning"的解释来看,有如下几点单词或者短语呈现的意思。人想要通过短语、符号表达的实际含义。文章、艺术作品呈现的想法。故最普通对meaning的理解,其实是表示符号(symbol)向想法(idea)的转换。如何在计算机中计算语义。可以使用,wordnet,一个包含同义词集合和词间关系的词库。但是WordNet仍有缺点...

2020-04-10 17:49:00 368

原创 Deep-IRT: Make Deep Learning Based Knowledge Tracing Explainable Using Item Response Theory

Deep-IRT: Make Deep Learning Based Knowledge Tracing Explainable Using Item Response TheoryStudent Ability and Difficulty NetworksDKVMN\text{DKVMN}DKVMN的模型架构可以被很容易的增强,进一步提供其他的有意义的信息。首先,每个潜在知识点的状态可以被...

2020-01-22 22:45:21 1167

原创 Dynamic Key-Value Memory Networks for knowledge Tracing

Dynamic Key-Value Memory Networks for knowledge TracingMemory-Augmented Neural NetworksMANN\text{MANN}MANN是一种用于多种NLP任务的网络结构,例如问答系统,自然语言翻译、单样本学习。典型的模型包括两部分:存储信息的记忆矩阵和和外界进行读写交换的控制器。读写操作通过attention\te...

2020-01-22 22:42:53 1328 1

原创 Python内置库collections使用集锦

collections中有以下类Class nameDescriptionnamedtuple用于创建具有命名字段的元组子类的工厂函数deque类似列表的容器,两端都有快速追加和弹出ChainMap类似于dict的类,用于创建多个映射的单个视图Counter用于计算可哈希对象的dict子类OrderedDict记住元素添加顺序的dict子类...

2020-01-05 16:58:33 250

原创 Google Colab 挂载 Google Drive

Step1启动notebook,执行以下代码from google.colab import drivedrive.mount('/content/gdrive')在文本框中输入连接中的验证码Step2在左侧文件中查看目录结构,gdrive所在的目录是/content/gdriveStep3使用如下代码进入项目目录!lsimport osos.chdir('/conten...

2019-12-29 13:17:50 1134

原创 NLP(1) - 使用gensim训练Word2vec

文章目录Word2vec第三方库gensimnltk训练Word2vec语料库(corpus)预处理使用gensim训练读取Word2vecCode参考Word2vec在NLP中,想要处理文本,避不开的问题就是如何表示词。在Word2vec出现之前,词以one-hot形式的编码表示,即一个词由一个仅包含0或1的向量表示,出现的单词位置置为1,其余单词位置置为0。这样的编码方式有一些缺点,其中之...

2019-12-21 22:11:11 921

原创 [李宏毅 机器学习] 1.线性回归

思维导图

2019-07-30 21:39:58 349 2

原创 [李宏毅 机器学习] 3. 梯度下降

文章目录思维导图回顾Tip1: 调整学习速率AdagradTip2: 随机梯度下降Tip3: 特征缩放标准化梯度下降的数学原理泰勒展开思维导图回顾在Step3中,我们需要根据loss function,对参数θ\thetaθ进行优化,使用到的方法就是梯度下降算法。可以用如下的函数表示。θ∗=arg⁡min⁡θL(θ)\theta^{*}=\arg \min _{\theta} L(\t...

2019-07-30 21:37:01 217

原创 [李宏毅 机器学习] 2.误差来源

文章目录思维导图数理统计中的方差和偏差估计均值$\mu$估计方差$\sigma^2$为什么会有这样的结果对于均值的估计偏差对于方差估计偏差话说回来模型的方差和偏差模型的方差模型的偏差模型诊断判断调整模型选择划分验证集N折交叉验证思维导图系统的误差来自两个方面,Bias和Variance数理统计中的方差和偏差当我们需要随机变量xxx所服从的总体分布的均值和方差的时候,有不同的估计方法。然而...

2019-07-30 21:35:15 515

原创 [统计学习方法] 感知机模型

感知机模型感知机是二类分类的线性分类模型,它将输入空间的实例划分为正负两类的分离超平面。而其学习旨在求出可以将训练数据进行线性划分的超平面。当引入误分类的损失函数后,可利用梯度下降法对损失函数进行极小化,损失函数值最小所对应的超平面即为所求。感知机在1957年由Rosenblatt提出,是神经网络与支持向量机的基础。感知机模型假设输入空间为X⊆Rn\mathscr{X} \subseteq...

2019-07-06 17:02:18 700

原创 【Machine Learning】Ch3.2 线性回归

3.2 线性回归线性回归的目的是,给定数据集D={(x1,y1),(x2,y2)...(xm,ym)}​D=\{(x_1,y_1),(x_2,y_2)...(x_m,y_m)\}​D={(x1​,y1​),(x2​,y2​)...(xm​,ym​)}​,其中xi=(xi1;xi2;...;xid)​x_i=(x_{i1};x_{i2};...;x_{id})​xi​=(xi1​;xi2​;......

2019-02-21 22:29:46 273

原创 【Machine Learning】机器学习中的性能度量

机器学习中的性能度量在前面中的的小节中有如下的两个性能度量错误率:分类错误的样本数占总样本数的比例精度:1-错误率通常情况下,单单使用这两个性能度量,不能很好的反应模型的训练结果。所以需要借助其他指标来评价模型的好坏。均方误差、错误率与精度在回归模型中,常用的性能度量是均方误差(mean squared error)E(f;d)=1m(f(xi)−yi)2E(f;d) = \fr...

2019-01-16 23:48:21 669

原创 【Machine Learining】Ch2. 模型评估与选择

第2章 模型评估与选择2.1 经验误差与过拟合错误率:分类错误的样本数占总样本数的比例精度:1-错误率过拟合:学习器把训练样本学的太好,甚至把训练样本的特点当做了潜在样本的一般性质,导致泛化性能下降的现象。引起过拟合的因素一般是学习能力太过强大。欠拟合:对训练样本的一般性质没有学习好。引起欠拟合的因素一般是学习能力低下。对候选模型的评估方法,对泛化误差进行评估,并选取泛化误差的最小...

2019-01-14 21:42:29 460

原创 【TensorFlow】从Anaconda安装TensorFlow

下载Anaconda,直接下载3.6版本的就好打开Anaconda Prompt,创建虚拟环境conda create -n tensorflow python=3.6activate tensorflow通过上面的命令即可在Anaconda中创建一个叫做tensorflow的虚拟环境,并激活这个环境更改下载源,由于默认的是使用国外的下载源,下载速度较慢,更换为清华的下载源...

2019-01-14 19:14:45 658

原创 【算法学习】FHQ Treap (无旋Treap)

FHQ Treap简介FHQ Treap和普通的Treap都是一个二叉搜索堆,其同时满足二叉树的性质(左子树的权值小于等于当前节点权值,右子树权值大于当前节点权值)和堆的性质(对于小根堆,当前节点的优先级是堆中最小的)。FHQ Treap与一般的Treap的不同之处主要在于:不用旋转,用split和merge来为维护堆的优先级。能够可持久化。操作FHQ Treap的核心操作是sp...

2018-09-28 22:53:33 5063 1

原创 【算法学习】左偏树

左偏树左偏树是一种可以快速合并的可并堆,相对于普通的二叉堆,左偏树的合并可以做到log(p1+p2)log(p_1 + p_2)log(p1​+p2​),是一种十分优秀的数据结构。性质左偏树是一种可并堆的实现,是一颗二叉树,它除了有二叉树的左右儿子,还有2个属性,键和距离。下面是左偏树的一些基本性质。节点的键值小于或等于左右子节点的键值。这是左偏树的堆性质。节点的左子节点的距离不小于右...

2018-09-27 22:05:23 3767 2

原创 【算法练习】Luogu P1197 [JSOI2008]星球大战(并查集)

题意很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治着整个星系。某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球。这些星球通过特殊的以太隧道互相直接或间接地连接。但好景不长,很快帝国又重新造出了他的超级武器。凭借这超级武器的力量,帝国开始有计划地摧毁反抗军占领的星球。由于星球的不断被摧毁,两个星球之间的通讯通道也开始不可靠起来。现在,反...

2018-09-26 16:44:00 229

原创 【算法练习】Luogu P2472 [SCOI2007]蜥蜴(最大流)

题意在一个r行c列的网格地图中有一些高度不同的石柱,一些石柱上站着一些蜥蜴,你的任务是让尽量多的蜥蜴逃到边界外。每行每列中相邻石柱的距离为1,蜥蜴的跳跃距离是d,即蜥蜴可以跳到平面距离不超过d的任何一个石柱上。石柱都不稳定,每次当蜥蜴跳跃时,所离开的石柱高度减1(如果仍然落在地图内部,则到达的石柱高度不变),如果该石柱原来高度为1,则蜥蜴离开后消失。以后其他蜥蜴不能落脚。任何时刻不能有两只蜥蜴...

2018-09-26 14:49:41 211

原创 【算法练习】Luogu P2604 [ZJOI2010]网络扩容(最大流+费用流)

题意给定一张有向图,每条边都有一个容量C和一个扩容费用W。这里扩容费用是指将容量扩大1所需的费用。求:在不扩容的情况下,1到N的最大流;将1到N的最大流增加K所需的最小扩容费用。题解第一问最大流。第二问,在原来最大流参量网络基础上,考虑如何加边求出结果。因为要求在原来的基础上增加流量K,新建源点S,S连1,容量为K,费用为0,这样保证了新增的流量为K。在原来的边的基础上,增加边,容...

2018-09-26 12:48:10 296

原创 【算法练习】BZOJ1934: [Shoi2007]Vote 善意的投票(最小割)

题意幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉。对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神。虽然每个人都有自己的主见,但是为了照顾一下自己朋友的想法,他们也可以投和自己本来意愿相反的票。我们定义一次投票的冲突数为好朋友之间发生冲突的总数加上和所有和自己本来意愿发生冲突的人数。 我们的问题就是,每位小朋友应该怎样投票,才能使冲突数最小?题解第i个小朋友偏好1,则S连i,容...

2018-09-23 17:32:12 164

原创 【网络流24题】运输问题(最小费用最大流)

题意W 公司有 mmm 个仓库和 nnn 个零售商店。第 iii 个仓库有 aia_iai​​​ 个单位的货物;第 jjj 个零售商店需要 bjb_jbj​​​ 个单位的货物。货物供需平衡,即∑i=1mai=∑j=1nbj​​\sum\limits_{i = 1} ^ m a_i = \sum\limits_{j = 1} ^ n b_j ​​i=1∑m​ai​=j=1∑n​bj​​​​​。从第...

2018-09-23 14:30:02 3406

原创 【网络流24题】餐巾计划(最小费用最大流)

题意一个餐厅在相继的 nnn 天里,每天需用的餐巾数不尽相同。假设第 iii 天需要 rir_iri​​​ 块餐巾。餐厅可以购买新的餐巾,每块餐巾的费用为 PPP 分;或者把旧餐巾送到快洗部,洗一块需 MMM天,其费用为 FFF 分;或者送到慢洗部,洗一块需 NNN 天,其费用为 SSS 分(S<FS < FS<F)。每天结束时,餐厅必须决定将多少块脏的餐巾送...

2018-09-23 13:53:49 194

原创 【网络流 24 题】方格取数(二分图的最大点权独立集)

题意在一个有 m×nm \times nm×n个方格的棋盘中,每个方格中有一个正整数。现要从方格中取数,使任意 222 个数所在方格没有公共边,且取出的数的总和最大。试设计一个满足要求的取数算法。题解题目要求不相邻,可以转换为最大独立集,又由于点权不全为1,则为最大点权独立集。最大点权独立集 = 总点权 - 最小点权覆盖,问题转换为如何求最小点权覆盖。建立二分图,源点向左点集连边, 容...

2018-09-19 00:38:11 340

原创 【算法学习】网络流模型与套路

网络流常见模型最大权闭合子图定义:图中每个点有点权,或正或负。在选择一个点后,必须选择某些后继点。一般情况求最大的收益。建图:对于点权为正的点(一般为收益),源点SSS向正权点连边,容量为点的权值。对于点权为负的点(一般为花费),向汇点TTT连边,容量为负权绝对值。对于要选择后继关系的点,前驱点向后继点连边,容量为infinfinf。跑最大流,求出最小割。最终答案 = 正权点之和 - 最小割...

2018-09-18 22:33:20 835

原创 【网络流24题】试题库(最大流)

题意假设一个试题库中有 nnn 道试题。每道试题都标明了所属类别。同一道题可能有多个类别属性。现要从题库中抽取 mmm 道题组成试卷。并要求试卷包含指定类型的试题。试设计一个满足要求的组卷算法。题解每一道题为一个点,每一种类型的试卷为一个点。源点向每一道题连容量为1的边,每一道题向其对应类型连容量的1的边,每一种类型的试卷向汇点连需要的个数为容量的边。跑最大流即可。代码#includ...

2018-09-18 18:05:25 1805

原创 【网络流24题】最长递增子序列(拆点+最大流)

题意给定正整数序列x1∼xnx_1 \sim x_nx1​∼xn​​​,以下递增子序列均为非严格递增。计算其最长递增子序列的长度 sss。计算从给定的序列中最多可取出多少个长度为 sss 的递增子序列。如果允许在取出的序列中多次使用x1x_1x1​​​ 和 xnx_nxn​​,则从给定序列中最多可取出多少个长度为 sss 的递增子序列。题解如果每个点只能用一次,考虑拆点,变成前点和...

2018-09-17 23:43:56 1024

algebra_2005_2006.zip

algebra_2005_2006数据集,常作为知识追踪的使用数据。KDD Cup 2010: Educational Data Mining Challenge使用的数据集之一。

2020-04-11

Dynamic Graph Algorithms

Dynamic Graph Algorithms Methodology & State of the Art Algorithmic Techniques & Experimen Conclusions

2018-08-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除