Pengwill's Blog

一百年太短,只争朝夕

排序:
默认
按更新时间
按访问量

模板总结(持续更新)

是时候总结一下了~ 图论部分 割点 /*解释: 如果为割点iscut[i] = 1, cutnum[i]表示去掉点i新增的(连通分量数目值-1) scc表示整张图的连通分量个数,n表示图的点数 调用: 先init(vertexn...

2018-08-02 16:46:19

阅读数:94

评论数:0

目录和导航

持续更新中…… 题解和代码都放在CSDN中 http://www.pengwill.top/record/

2018-03-15 22:04:42

阅读数:85

评论数:0

【算法练习】BZOJ1934: [Shoi2007]Vote 善意的投票(最小割)

题意 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉。对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神。虽然每个人都有自己的主见,但是为了照顾一下自己朋友的想法,他们也可以投和自己本来意愿相反的票。我们定义一次投票的冲突数为好朋友之间发生冲突的总数加上和所有和自己本来意愿发生冲突的人数...

2018-09-23 17:32:12

阅读数:3

评论数:0

【网络流24题】运输问题(最小费用最大流)

题意 W 公司有 mmm 个仓库和 nnn 个零售商店。第 iii 个仓库有 aia_iai​​​ 个单位的货物;第 jjj 个零售商店需要 bjb_jbj​​​ 个单位的货物。货物供需平衡,即∑i=1mai=∑j=1nbj​​\sum\limits_{i = 1} ^ m a_i = \sum\...

2018-09-23 14:30:02

阅读数:14

评论数:0

【网络流24题】餐巾计划(最小费用最大流)

题意 一个餐厅在相继的 nnn 天里,每天需用的餐巾数不尽相同。假设第 iii 天需要 rir_iri​​​ 块餐巾。餐厅可以购买新的餐巾,每块餐巾的费用为 PPP 分;或者把旧餐巾送到快洗部,洗一块需 MMM天,其费用为 FFF 分;或者送到慢洗部,洗一块需 NNN 天,其费用为 SSS 分(S...

2018-09-23 13:53:49

阅读数:13

评论数:0

【网络流 24 题】方格取数(二分图的最大点权独立集)

题意 在一个有 m×nm \times nm×n个方格的棋盘中,每个方格中有一个正整数。 现要从方格中取数,使任意 222 个数所在方格没有公共边,且取出的数的总和最大。试设计一个满足要求的取数算法。 题解 题目要求不相邻,可以转换为最大独立集,又由于点权不全为1,则为最大点权独立集。 ...

2018-09-19 00:38:11

阅读数:19

评论数:0

【算法学习】网络流模型与套路

网络流常见模型 最大权闭合子图 定义:图中每个点有点权,或正或负。在选择一个点后,必须选择某些后继点。一般情况求最大的收益。 建图:对于点权为正的点(一般为收益),源点SSS向正权点连边,容量为点的权值。对于点权为负的点(一般为花费),向汇点TTT连边,容量为负权绝对值。对于要选择后继关系的...

2018-09-18 22:33:20

阅读数:15

评论数:0

【网络流24题】试题库(最大流)

题意 假设一个试题库中有 nnn 道试题。每道试题都标明了所属类别。同一道题可能有多个类别属性。现要从题库中抽取 mmm 道题组成试卷。并要求试卷包含指定类型的试题。试设计一个满足要求的组卷算法。 题解 每一道题为一个点,每一种类型的试卷为一个点。 源点向每一道题连容量为1的边,每一道题向...

2018-09-18 18:05:25

阅读数:21

评论数:0

【网络流24题】最长递增子序列(拆点+最大流)

题意 给定正整数序列x1∼xnx_1 \sim x_nx1​∼xn​​​,以下递增子序列均为非严格递增。 计算其最长递增子序列的长度 sss。 计算从给定的序列中最多可取出多少个长度为 sss 的递增子序列。 如果允许在取出的序列中多次使用x1x_1x1​​​ 和 xnx_nxn​​,则从给定序...

2018-09-17 23:43:56

阅读数:9

评论数:0

【网络流24题】圆桌聚餐 (最大流)

题意 假设有来自 nn n 个不同单位的代表参加一次国际会议。每个单位的代表数分别为 riri r_i ​​。会议餐厅共有 mm m 张餐桌,每张餐桌可容纳 cici c_i​​ 个代表就餐。 为了使代表们充分交流,希望从同一个单位来的代表不在同一个餐桌就餐。 试设计一个算法,给出满足要...

2018-09-13 00:49:45

阅读数:17

评论数:0

【网络流24题】魔术球(最小路径覆盖)

题意 假设有 nn n 根柱子,现要按下述规则在这 nn n 根柱子中依次放入编号为 1,2,3,4,⋯1,2,3,4,⋯ 1, 2, 3, 4, \cdots 的球。 每次只能在某根柱子的最上面放球。 在同一根柱子中,任何 22 2 个相邻球的编号之和为完全平方数。 试设计一个...

2018-09-13 00:29:46

阅读数:9

评论数:0

【网络流24题】最小路径覆盖(最小路径覆盖)

题意 给定有向图 G=(V,E)G=(V,E)G = (V, E)。设 PP P 是 GG G 的一个简单路(顶点不相交)的集合。如果 VV V 中每个顶点恰好在 PP P 的一条路上,则称 PP P 是 GG G 的一个路径覆盖。PP P 中路径可以从 VVV 的任何一个顶点开始...

2018-09-12 00:19:37

阅读数:14

评论数:0

【网络流24题】太空飞行计划(最大权闭合子图)

题意 W 教授正在为国家航天中心计划一系列的太空飞行。每次太空飞行可进行一系列商业性实验而获取利润。现已确定了一个可供选择的实验集合 E=E1,E2,⋯,EmE={E1,E2,⋯,Em}E=E​1​​,E​2​​,⋯,E​m​​E=E1,E2,⋯,EmE={E1,E2,⋯,Em}E=E​1​​,...

2018-09-12 00:03:25

阅读数:8

评论数:0

【网络流24题】搭配飞行员(二分图最大匹配)

题意 飞行大队有若干个来自各地的驾驶员,专门驾驶一种型号的飞机,这种飞机每架有两个驾驶员,需一个正驾驶员和一个副驾驶员。由于种种原因,例如相互配合的问题,有些驾驶员不能在同一架飞机上飞行,问如何搭配驾驶员才能使出航的飞机最多。 因为驾驶工作分工严格,两个正驾驶员或两个副驾驶员都不能同机飞行。 ...

2018-09-11 23:51:40

阅读数:11

评论数:0

【算法练习】Luogu P3831 [SHOI2012]回家的路(分层图最短路)

题意 2046 年 OI 城的城市轨道交通建设终于全部竣工,由于前期规划周密,建成后的轨道交通网络由2n2n2n条地铁线路构成,组成了一个nnn纵nnn横的交通网。如下图所示,这2n2n2n条线路每条线路都包含nnn个车站,而每个车站都在一组纵横线路的交汇处。 出于建设成本的考虑,并非每个车站...

2018-09-10 12:50:36

阅读数:14

评论数:0

【算法练习】LightOJ - 1257 Farthest Nodes in a Tree (II) (点分治)

题意 求出树上所有点的最远距离。n≤30000n≤30000n \le 30000。 题解 点分治。 树上最长路径,要么经过当前的重心,要么不经过。所以可以点分治来做。 首先求出重心每一个子树上节点到重心的距离,同时求出每一个子树中到重心的最远点。对于一个子树上的节点,如果他的最长路...

2018-09-10 00:33:52

阅读数:10

评论数:0

【算法练习】Luogu P4149 [IOI2011]Race(点分治)

题意 给一棵树,每条边有权。求一条简单路径,权值和等于 K,且边的数量最小。 题解 点分治 代码 方法1 先遍历根节点,然后去除路径节点全在子树的方法。常数稍微大一点。 // luogu-judger-enable-o2 #include<bit...

2018-09-09 22:06:21

阅读数:26

评论数:0

【算法练习】HDU - 4812 D Tree (点分治)

题意 求树上是否有路径点权成绩mod1e6+7 = k。若有多对路径,输出节点编号最小的一组。 题解 逆元 + 点分治即可。 代码 #include<bits/stdc++.h> using namespace std; typedef...

2018-09-09 22:03:01

阅读数:14

评论数:0

【算法练习】POJ - 2114 Boatherds(点分治)

题意 给出一棵树,一些询问,询问树上是否有路径和为k的路径。 题解 发现询问只有100个,依次处理询问即可。 代码 这里依旧给出了两种写法, 一种是排序后利用单调性,一种是排序后二分。 利用单调性常数更小。 如果利用单调性,函数要返回cnt<&amp...

2018-09-09 21:55:45

阅读数:15

评论数:0

【算法练习】POJ - 1741 Tree(点分治)

题意 给一颗树,求树上权值为k的路径条数。 题解 点分治。 代码 分别为排序后使用单调性求解,或者是二分求解(注释部分)。 使用单调性O(n)O(n)O(n)更快一些。 #include<cstdio> #include&amp...

2018-09-09 21:49:50

阅读数:56

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭