FlatBuffers与protobuf性能比较

    FlatBuffers发布时,顺便也公布了它的性能数据,具体数据请见Benchmark

    它的测试用例由以下数据构成"a set of about 10 objects containing an array, 4 strings, and a large variety of int/float scalar values of all sizes, meant to be representative of game data, e.g. a scene format."

   我感觉这样测试如同儿戏,便自己设计了一个测试用例,主要关注CPU计算时间和内存空间占用两个指标,参考对象是protobuf。

   测试用例为:序列化一个通讯录personal_info_list(table),通讯录可以认为是有每个人的信息(personal_info)的集合。每个人信息personal_info(table)有:个人id(uint)、名字(string)、年龄(byte)、性别(enum, byte)和电话号码(ulong)。本来我想用struct表示personal_info(table),但是struct不允许有数组或string成员,无奈我用table描述它了。相应的idl文件如下:

//
 FILE     : tellist.fbs
 DESC     : basic message for msg-center
 AUTHOR   : v 0.1 written by Alex Stocks on June 22, 2014
 LICENCE  :
 MOD      :


namespace as.tellist;

enum GENDER_TYPE : byte
{
	MALE	= 0,
	FEMALE	= 1,
	OTHER	= 2
}

table personal_info
{
	id : uint;
	name : string;
	age : byte;
	gender : GENDER_TYPE;
	phone_num : ulong;
}

table personal_info_list
{
	info : [personal_info];
}

root_type personal_info_list;

   因为要以protobuf做性能参考,列出protobuf的idl文件如下:    

//
 FILE     : tellist.proto
 DESC     : basic message for msg-center
 AUTHOR   : v 0.1 written by Alex Stocks on June 22, 2014
 LICENCE  :
 MOD      :


package as.tellist;

enum gender_type
{
	MALE	= 0;
	FEMALE	= 1;
	OTHER	= 2;
}

message personal_info
{
	optional uint32			id = 1;
	optional string			name = 2;
	optional uint32			age = 3;
	optional gender_type	gender = 4;
	optional uint64			phone_num = 5;
}

message personal_info_list
{
	repeated personal_info	info = 1;
}

    若用C的struct描述对应的头文件(其对应的程序称之为“二进制”),如下:

/**
 * FILE		: tellist.h
 * DESC		: to test tellist
 * AUTHOR	: v1.0 written by Alex Stocks
 * DATE		: on June 28, 2014
 * LICENCE	: GPL 2.0
 * MOD		:
 **/

#ifndef __TELLIST_H__
#define __TELLIST_H__

enum
{
 GENDER_TYPE_MALE = 0,
 GENDER_TYPE_FEMALE = 1,
 GENDER_TYPE_OTHER = 2,
};


inline const char **EnumNamesGENDER_TYPE()
{
 static const char *names[] = { "MALE", "FEMALE", "OTHER"};
 return names;
}


inline const char *EnumNameGENDER_TYPE(int e)
{
 return EnumNamesGENDER_TYPE()[e];
}

typedef struct personal_info_tag
{
 unsigned			id;
 unsigned char		age;
 char				gender;
 unsigned long long	phone_num;
 char				name[32];
} personal_info;

typedef struct personal_info_list_tag
{
 int				size;
 personal_info	info[0];
} personal_info_list;

#endif

// the end of the header file tellist.h

    测试时,在内存中构造37个personal_info对象,并序列化之,重复这个过程100万次,然后再进行反序列化,再重复100万次。

    测试结果如下(补充:tellist_pb是protobuf测试程序,tellist_fb是FlatBuffers测试程序,tellist_fb是二进制测试程序,):

测试环境:12Core Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00GHz
free
             total       used       free     shared    buffers     cached
Mem:      66081944   62222028    3859916          0     196448   43690828
-/+ buffers/cache:   18334752   47747192
Swap:       975864     855380     120484

protobuf三次测试结果:
bin/tellist_pb 
encode: loop = 1000000, time diff = 14210ms
decode: loop = 1000000, time diff = 11185ms
buf size:841

bin/tellist_pb 
encode: loop = 1000000, time diff = 14100ms
decode: loop = 1000000, time diff = 11234ms
buf size:841

bin/tellist_pb 
encode: loop = 1000000, time diff = 14145ms
decode: loop = 1000000, time diff = 11237ms
buf size:841
序列化后占用内存空间841Byte,encode平均运算时间42455ms / 3 = 14151.7ms,decode平均计算时间33656ms / 3 = 11218.7ms

flatbuffers三次测试结果:
 bin/tellist_fb 
encode: loop = 1000000, time diff = 11666ms
decode: loop = 1000000, time diff = 1141ms
buf size:1712

bin/tellist_fb 
encode: loop = 1000000, time diff = 11539ms
decode: loop = 1000000, time diff = 1200ms
buf size:1712

bin/tellist_fb 
encode: loop = 1000000, time diff = 11737ms
decode: loop = 1000000, time diff = 1141ms
buf size:1712
序列化后占用内存空间1712Byte,encode平均运算时间34942ms / 3 = 11647.3ms,decode平均计算时间3482ms / 3 = 1160.7ms

二进制三次测试结果:
bin/tellist 
encode: loop = 1000000, time diff = 4967ms
decode: loop = 1000000, time diff = 688ms
buf size:304

 bin/tellist 
encode: loop = 1000000, time diff = 4971ms
decode: loop = 1000000, time diff = 687ms
buf size:304

bin/tellist 
encode: loop = 1000000, time diff = 4966ms
decode: loop = 1000000, time diff = 686ms
buf size:304
序列化后占用内存空间304Byte,encode平均运算时间14904ms / 3 = 4968ms,decode平均计算时间2061ms / 3 = 687ms

测试环境:1 Core Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz
free
             total       used       free     shared    buffers     cached
Mem:        753932     356036     397896          0      50484     224848
-/+ buffers/cache:      80704     673228
Swap:      1324028        344    1323684
protobuf三次测试结果:
./bin/tellist_pb 
encode: loop = 1000000, time diff = 12451ms
decode: loop = 1000000, time diff = 9662ms
buf size:841

./bin/tellist_pb 
encode: loop = 1000000, time diff = 12545ms
decode: loop = 1000000, time diff = 9840ms
buf size:841

./bin/tellist_pb 
encode: loop = 1000000, time diff = 12554ms
decode: loop = 1000000, time diff = 10460ms
buf size:841
序列化后占用内存空间841Byte,encode平均运算时间37550ms / 3 = 12516.7ms,decode平均计算时间29962ms / 3 = 9987.3ms

flatbuffers三次测试结果:
bin/tellist_fb 
encode: loop = 1000000, time diff = 9640ms
decode: loop = 1000000, time diff = 1164ms
buf size:1712

bin/tellist_fb 
encode: loop = 1000000, time diff = 9595ms
decode: loop = 1000000, time diff = 1170ms
buf size:1712

bin/tellist_fb 
encode: loop = 1000000, time diff = 9570ms
decode: loop = 1000000, time diff = 1172ms
buf size:1712
序列化后占用内存空间1712Byte,encode平均运算时间28805ms / 3 = 9345ms,decode平均计算时间3506ms / 3 = 1168.7ms

二进制三次测试结果:
bin/tellist 
encode: loop = 1000000, time diff = 4194ms
decode: loop = 1000000, time diff = 538ms
buf size:304

bin/tellist 
encode: loop = 1000000, time diff = 4387ms
decode: loop = 1000000, time diff = 544ms
buf size:304

bin/tellist 
encode: loop = 1000000, time diff = 4181ms
decode: loop = 1000000, time diff = 533ms
buf size:304
序列化后占用内存空间304Byte,encode平均运算时间12762ms / 3 = 4254ms,decode平均计算时间1615ms / 3 = 538.3ms

    上面的二进制程序的结果无论在内存空间占用还是cpu计算时间这两个指标上都是最快的。但本文只讨论FlatBuffers和protobuf,所以不让它的结果参与比较。

    从以上数据看出,在内存空间占用这个指标上,FlatBuffers占用的内存空间比protobuf多了两倍。序列化时二者的cpu计算时间FB比PB快了3000ms左右,反序列化时二者的cpu计算时间FB比PB快了9000ms左右。FB在计算时间上占优势,而PB则在内存空间上占优(相比FB,这也正是它计算时间比较慢的原因)。

    上面的测试环境是在公司的linux server端和我自己的mac pro分别进行的。请手机端开发者自己也在手机端进行下测试, 应该能得到类似的结果。Google宣称FB适合游戏开发是有道理的,如果在乎计算时间我想它也适用于后台开发。

    另外,FB大量使用了C++11的语法,其从idl生成的代码接口不如protubuf友好。不过相比使用protobuf时的一堆头文件和占18M之多的lib库,FlatBuffers仅仅一个"flatbuffers/flatbuffers.h"就足够了。

    测试程序已经上传到百度网盘,点击这个链接即可下载。欢迎各位的批评意见。



评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值