放棋子--蓝桥杯

2012年蓝桥杯全国软件大赛预赛C++本科组第7题,目标是完成6x6棋盘上每行每列恰好3颗棋子的放置。题目要求分析并补全给定代码,包括CheckStoneNum、GetRowStoneNum、GetColStoneNum、show和GoNext等函数的功能。参赛者需在解答.txt文件中仅填写缺失的代码部分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎访问我的新博客:http://www.milkcu.com/blog/

原文地址:http://www.milkcu.com/blog/archives/1366864680.html

简述

这是2012年第三届蓝桥杯全国软件大赛预赛(C++本科组)第7题,要求将代码补全,实现“每行每列都正好有3颗棋子”的功能。

推荐链接:《2012蓝桥杯软件大赛预赛题目汇总》

题目描述

    今有 6 x 6 的棋盘格。其中某些格子已经预先放好了棋子。现在要再放上去一些,使得:每行每列都正好有3颗棋子。我们希望推算出所有可能的放法。下面的代码就实现了这个功能。
棋盘放棋子
    初始数组中,“1”表示放有棋子,“0”表示空白。

int N = 0;

bool CheckStoneNum(int x[][6])
{
	for(int k=0; k<6; k++)
	{
		int NumRow = 0;
		int NumCol = 0;
		for(int i=0; i<6; i++)
		{
			if(x[k][i]) NumRow++;
			if(x[i][k]) NumCol++;
		}
		if(_____________________) return false;  // 填空
	}
	return true;
}

int GetRowStoneNum(int x[][6], int r)
{
	int sum = 0;
	for(int i=0; i<6; i++) 	if(x[r][i]) sum++;
	return sum;
}

int GetColStoneNum(int x[][6], int c)
{
	int sum = 0;
	for(int i=0; i<6; i++) 	if(x[i][c]) sum++;
	return sum;
}

void show(int x[][6])
{
	for(int i=0; i<6; i++)
	{
		for(int j=0; j<6; j++) printf("%2d", x[i][j]);
		printf("\n");
	}
	printf("\n");
}

void f(int x[][6], int r, int c);

void GoNext(int x[][6],  int r,  int c)
{
	if(c<6)
		_______________________;   // 填空
	else
		f(x, r+1, 0);
}

void f(int x[][6], int r, int c)
{
	if(r==6)
	{
		if(CheckStoneNum(x))
		{
			N++;
			show(x);
		}
		return;
	}

	if(______________)  // 已经放有了棋子
	{
		GoNext(x,r,c);
		return;
	}
	
	int rr = GetRowStoneNum(x,r);
	int cc = GetColStoneNum(x,c);

	if(cc>=3)  // 本列已满
		GoNext(x,r,c);  
	else if(rr>=3)  // 本行已满
		f(x, r+1, 0);   
	else
	{
		x[r][c] = 1;
		GoNex。t(x,r,c);
		x[r][c] = 0;
		
		if(!(3-rr >= 6-c || 3-cc >= 6-r))  // 本行或本列严重缺子,则本格不能空着!
			GoNext(x,r,c);  
	}
}

int main(int argc, char* argv[])
{
	int x[6][6] = {
		{1,0,0,0,0,0},
		{0,0,1,0,1,0},
		{0,0,1,1,0,1},
		{0,1,0,0,1,0},
		{0,0,0,1,0,0},
		{1,0,1,0,0,1}
	};

	f(x, 0, 0);
	
	printf("%d\n", N);

	return 0;
}

请分析代码逻辑,并推测划线处的代码。
答案写在 “解答.txt” 文件中
注意:只写划线处应该填的内容,划线前后的内容不要抄写。

分析

该题的难点在读懂每个函数的作用:

  • bool CheckStoneNum(int x[][6]);                  判断每行每列是否都正好有3颗棋子;
  • int GetRowStoneNum(int x[][6], int r);          返回r行存在的棋子数;
  • int GetColStoneNum(int x[][6], int c);           返回c列的棋子数;
  • void show(int x[][6]);                                        将符合要求的方案打印出来;
  • void GoNext(int x[][6],  int r,  int c);                 从(r, c)开始往后遍历二维数组;

源代码

# include <stdio.h>

int N = 0;

bool CheckStoneNum(int x[][6])
{
	for(int k=0; k<6; k++)
	{
		int NumRow = 0;
		int NumCol = 0;
		for(int i=0; i<6; i++)
		{
			if(x[k][i]) NumRow++;
			if(x[i][k]) NumCol++;
		}
		if(NumRow != 3 || NumCol != 3) return false;  // 填空
	}
	return true;
}

int GetRowStoneNum(int x[][6], int r)
{
	int sum = 0;
	for(int i=0; i<6; i++) 	if(x[r][i]) sum++;
	return sum;
}

int GetColStoneNum(int x[][6], int c)
{
	int sum = 0;
	for(int i=0; i<6; i++) 	if(x[i][c]) sum++;
	return sum;
}

void show(int x[][6])
{
	for(int i=0; i<6; i++)
	{
		for(int j=0; j<6; j++) printf("%2d", x[i][j]);
		printf("\n");
	}
	printf("\n");
}

void f(int x[][6], int r, int c);

void GoNext(int x[][6],  int r,  int c)
{
	if(c<6)
		f(x, r, c + 1);   // 填空
	else
		f(x, r+1, 0);
}

void f(int x[][6], int r, int c)
{
	if(r==6)
	{
		if(CheckStoneNum(x))
		{
			N++;
			show(x);
		}
		return;
	}

	if(x[r][c] == 1)  // 已经放有了棋子
	{
		GoNext(x,r,c);
		return;
	}
	
	int rr = GetRowStoneNum(x,r);
	int cc = GetColStoneNum(x,c);

	if(cc>=3)  // 本列已满
		GoNext(x,r,c);  
	else if(rr>=3)  // 本行已满
		f(x, r+1, 0);   
	else
	{
		x[r][c] = 1;
		GoNext(x,r,c);
		x[r][c] = 0;
		
		if(!(3-rr >= 6-c || 3-cc >= 6-r))  // 本行或本列严重缺子,则本格不能空着!
			GoNext(x,r,c);  
	}
}

int main(int argc, char* argv[])
{
	int x[6][6] = {
		{1,0,0,0,0,0},
		{0,0,1,0,1,0},
		{0,0,1,1,0,1},
		{0,1,0,0,1,0},
		{0,0,0,1,0,0},
		{1,0,1,0,0,1}
	};

	f(x, 0, 0);
	
	printf("%d\n", N);

	return 0;
}

最后答案

NumRow != 3 || NumCol != 3
f(x, r, c + 1)
x[r][c] == 1
<think>嗯,用户想参加蓝桥杯比赛,现在需要了解棋盘相关的算法题解法。首先,我得回忆一下蓝桥杯常见的棋盘类题目类型。可能涉及的问题包括路径搜索、棋子置、状态模拟等。比如引用中提到的跳马问题、车的置,还有青蛙排列的问题,这些都是典型的棋盘算法题。 用户提到的几个引用,像跳马问题属于BFS求最短路径,车的置可能涉及组合数学或者回溯,青蛙排列可能需要模拟或动态规划。我需要把这些问题的解法分门别类,给出清晰的思路和示例代码。 首先,路径搜索类问题,比如跳马,通常用BFS,因为要找到最少步数。马的移动有八个方向,需要处理越界和访问标记。然后,组合类问题如车的置,可能需要计算排列组合,考虑攻击范围,或者用回溯法逐行置。状态变换问题像青蛙移动,可能需要模拟每一步的操作,或者用BFS处理不同状态。 接下来,我应该分析每个类型的解题步骤,给出关键点。例如,BFS需要队列和visited数组,组合问题要考虑数学公式或递归回溯。同时,代码示例要简洁,符合Python语法,因为用户提供的示例代码也是Python的。 另外,用户可能需要了解这些问题的常见变体和优化方法。比如BFS中的双向BFS或剪枝,组合问题中的动态规划优化,状态压缩技巧等。还要注意边界条件的处理,比如棋盘大小、起始和目标位置是否合法。 最后,生成相关问题时要覆盖各个类型,帮助用户进一步深入学习。比如性能分析、优化方法、应用场景等。确保回答结构清晰,逐步引导用户理解解法,并参考提供的引用资料,增强答案的可信度。</think>### 蓝桥杯棋盘算法题解法分析 蓝桥杯棋盘类题目常涉及路径搜索、状态模拟、动态规划等算法。以下是典型问题分类及解法思路: --- #### 一、路径搜索类(如跳马问题) **题目示例**:棋盘上马从$(a,b)$跳到$(c,d)$的最短步数[^1]。 **解法思路**: 1. **广度优先搜索(BFS)**:逐层遍历所有可能的跳跃路径,首次到达目标点时步数最少。 2. **关键步骤**: - 定义马的8种跳跃方向(dx, dy)。 - 使用队列存储当前位置和步数,用二维数组标记已访问的位置。 - 遇到目标点立即返回步数。 **代码片段**: ```python from collections import deque def min_horse_jumps(n, a, b, c, d): directions = [(-2,1), (-1,2), (1,2), (2,1), (2,-1), (1,-2), (-1,-2), (-2,-1)] visited = [[False]*(n+1) for _ in range(n+1)] q = deque([(a, b, 0)]) visited[a][b] = True while q: x, y, steps = q.popleft() if x == c and y == d: return steps for dx, dy in directions: nx, ny = x+dx, y+dy if 0 <= nx <= n and 0 <= ny <= n and not visited[nx][ny]: visited[nx][ny] = True q.append((nx, ny, steps+1)) return -1 # 不可达 ``` --- #### 二、组合数学类(如车的置问题) **题目示例**:在$n \times n$棋盘置车且不互相攻击的方案数[^4]。 **解法思路**: 1. **排列组合**:车不能同行同列,等价于在$n$行中选择$k$行置车,方案数为$\binom{n}{k} \times n!/(n-k)!$。 2. **动态规划**:若需计算所有可能$k$(从0到n)的总方案数,可用递推公式。 **公式推导**: 总方案数为$\sum_{k=0}^{n} \binom{n}{k} \times \frac{n!}{(n-k)!}$,化简后为$(n+1)! - 1$。 --- #### 三、状态变换类(如青蛙排列问题) **题目示例**:青蛙在茶杯间跳跃,求达到目标状态的最小操作次数[^3]。 **解法思路**: 1. **BFS + 状态压缩**:将青蛙排列状态转化为字符串或数字,通过BFS遍历所有可能状态。 2. **剪枝优化**:跳过重复状态的扩展。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值