多线程无锁编程--原子计数操作:__sync_fetch_and_add等12个操作

本文探讨了多线程编程中使用__sync_fetch_and_add系列原子操作与传统线程锁(mutex)的区别。通过具体示例代码及性能测试,展示了原子操作在确保线程安全的同时,相较于线程锁能提供更高的性能。

        最近自己做了一些涉及多线程编程的项目,其中就涉及到多线程间计数操作、共享状态或者统计相关时间次数,这些都需要在多线程之间共享变量和修改变量,如此就需要在多线程间对该变量进行互斥操作和访问。

        通常遇到多线程互斥的问题,首先想到的就是加锁lock,通过加互斥锁来进行线程间互斥,但是最近有看一些开源的项目,看到有一些同步读和操作的原子操作函数——__sync_fetch_and_add系列的命令,然后自己去网上查找一番,找到一篇博文有介绍这系列函数,学习一番后记录下来。


首先,C/C++程序中count++这种操作不是原子的,一个自加操作,本质上分为3步:

  1. 从缓存取到寄存器
  2. 在寄存器内加1
  3. 再存入缓存
但是由于时序的因素,多线程操作同一个全局变量,就会出现很多问题。这就是多线程并发编程的难点,尤其随着计算机硬件技术的快速发展,多CPU多核技术更彰显出这种困难。

通常,最简单的方法就是加锁保护,互斥锁(mutex),这也是我使用最多的解决方案。大致代码如下:
pthread_mutex_t lock;
pthread_mutex_init(&lock,...);

pthread_mutex_lock(&lock);
count++;
pthread_mutex_unlock(&lock);

后来,在一些C/C++开源项目中,看到通过__sync_fetch_and_add一系列命令进行原子性操作,随后就在网上查阅相关资料,发现有很多博客都有介绍这系列函数。

__sync_fetch_and_add系列一共有12个函数,分别:加/减/与/或/异或等原子性操作函数,__sync_fetch_and_add,顾名思义,先fetch,返回自加前的值。举例说明,count = 4,调用__sync_fetch_and_add(&count, 1)之后,返回值是4,但是count变成5。同样,也有__sync_add_and_fetch,先自加,然后返回自加后的值。这样对应的关系,与i++和++i的关系是一样的。

gcc从4.1.2开始提供了__sync_*系列的build-in函数,用于提供加减和逻辑运算的原子操作,其声明如下:

type __sync_fetch_and_add (type *ptr, type value, ...)
type __sync_fetch_and_sub (type *ptr, type value, ...)
type __sync_fetch_and_or (type *ptr, type value, ...)
type __sync_fetch_and_and (type *ptr, type value, ...)
type __sync_fetch_and_xor (type *ptr, type value, ...)
type __sync_fetch_and_nand (type *ptr, type value, ...)

type __sync_add_and_fetch (type *ptr, type value, ...)
type __sync_sub_and_fetch (type *ptr, type value, ...)
type __sync_or_and_fetch (type *ptr, type value, ...)
type __sync_and_and_fetch (type *ptr, type value, ...)
type __sync_xor_and_fetch (type *ptr, type value, ...)
type __sync_nand_and_fetch (type *ptr, type value, ...)

上述12个函数即为所有,通过函数名字就可以知道函数的作用。需要注意的是,这个type不能乱用(type只能是int, long, long long以及对应的unsigned类型),同时在用gcc编译的时候要加上选项 -march=i686。
后面的可扩展参数(...)用来指出哪些变量需要memory barrier,因为目前gcc实现的是full barrier(类似Linux kernel中的mb(),表示这个操作之前的所有内存操作不会被重排到这个操作之后),所以可以忽略掉这个参数。

下面简单介绍一下__sync_fetch_and_add反汇编出来的指令(实际上,这部分我还不是很懂,都是从其他博客上摘录的)
804889d:f0 83 05 50 a0 04 08 lock addl $0x1,0x804a050
可以看到,addl前面有一个lock,这行汇编指令前面是f0开头,f0叫做指令前缀,Richard Blum。lock前缀的意思是对内存区域的排他性访问。

其实,lock是锁FSB,前端串行总线,Front Serial Bus,这个FSB是处理器和RAM之间的总线,锁住FSB,就能阻止其他处理器或者Core从RAM获取数据。当然这种操作开销相当大,只能操作小的内存可以这样做,想想我们有memcpy,如果操作一大片内存,锁内存,那么代价太大了。所以前面介绍__sync_fetch_and_add等函数,type只能是int, long, long long以及对应的unsigned类型。

此外,还有两个类似的原子操作,
bool __sync_bool_compare_and_swap(type *ptr, type oldval, type newval, ...)
type __sync_val_compare_and_swap(type *ptr, type oldval, type newval, ...)

这两个函数提供原子的比较和交换,如果*ptr == oldval,就将newval写入*ptr,
第一个函数在相等并写入的情况下返回true;
第二个函数在返回操作之前的值。

type __sync_lock_test_and_set(type *ptr, type value, ...)
将*ptr设为value并返回*ptr操作之前的值;
void __sync_lock_release(type *ptr, ...)
将*ptr置为0

有了这些宝贝函数,对于多线程对全局变量进行操作(自加、自减等)问题,我们就不用考虑线程锁,可以考虑使用上述函数代替,和使用pthread_mutex保护的作用是一样的,线程安全且性能上完爆线程锁。

下面是对线程锁和原子操作使用对比,并且进行性能测试与对比。代码来自于文献【1】,弄懂后并稍微改动一点点。代码中分别给出加锁、加线程锁、原子计数操作三种情况的比较。
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <pthread.h>
#include <sched.h>
#include <linux/unistd.h>
#include <sys/syscall.h>
#include <linux/types.h>
#include <time.h>
#include <sys/time.h>

#define INC_TO 1000000 // one million

__u64 rdtsc ()
{
    __u32 lo, hi;
    __asm__ __volatile__
    (
       "rdtsc":"=a"(lo),"=d"(hi)
    );

    return (__u64)hi << 32 | lo;
}

int global_int = 0;

pthread_mutex_t count_lock = PTHREAD_MUTEX_INITIALIZER;//初始化互斥锁

pid_t gettid ()
{
    return syscall(__NR_gettid);
}

void * thread_routine1 (void *arg)
{
    int i;
    int proc_num = (int)(long)arg;
    
    __u64 begin, end;
    struct timeval tv_begin, tv_end;
    __u64 time_interval;
    
    cpu_set_t set;
    
    CPU_ZERO(&set);
    CPU_SET(proc_num, &set);

    if (sched_setaffinity(gettid(), sizeof(cpu_set_t), &set))
    {
		fprintf(stderr, "failed to set affinity\n");
        return NULL;
    }
    begin = rdtsc();
    gettimeofday(&tv_begin, NULL);
    for (i = 0; i < INC_TO; i++)
    {
        __sync_fetch_and_add(&global_int, 1);
    }
    gettimeofday(&tv_end, NULL);
    end = rdtsc();
    time_interval = (tv_end.tv_sec - tv_begin.tv_sec) * 1000000 + (tv_end.tv_usec - tv_begin.tv_usec);
    fprintf(stderr, "proc_num : %d, __sync_fetch_and_add cost %llu CPU cycle, cost %llu us\n", proc_num, end - begin, time_interval);
    
    return NULL;
}

void *thread_routine2(void *arg)
{
    int i;
    int proc_num = (int)(long)arg;

    __u64 begin, end;
    struct timeval tv_begin, tv_end;
    __u64 time_interval;
    
    cpu_set_t set;
    
    CPU_ZERO(&set);
    CPU_SET(proc_num, &set);

    if (sched_setaffinity(gettid(), sizeof(cpu_set_t), &set))
    {
        fprintf(stderr, "failed to set affinity\n");
        return NULL;
    }
    begin = rdtsc();
    gettimeofday(&tv_begin, NULL);
    for (i = 0; i < INC_TO; i++)
    {
        pthread_mutex_lock(&count_lock);
        global_int++;
        pthread_mutex_unlock(&count_lock);
    }
    gettimeofday(&tv_end, NULL);
    end = rdtsc();
    time_interval = (tv_end.tv_sec - tv_begin.tv_sec) * 1000000 + (tv_end.tv_usec - tv_begin.tv_usec);
    fprintf(stderr, "proc_num : %d, pthread_mutex_lock cost %llu CPU cycle, cost %llu us\n", proc_num, end - begin, time_interval);
    
    return NULL;  
}

void *thread_routine3(void *arg)
{
    int i;
    int proc_num = (int)(long)arg;

    __u64 begin, end;
    struct timeval tv_begin, tv_end;
    __u64 time_interval;
    
    cpu_set_t set;
    
    CPU_ZERO(&set);
    CPU_SET(proc_num, &set);

    if (sched_setaffinity(gettid(), sizeof(cpu_set_t), &set))
    {
        fprintf(stderr, "failed to set affinity\n");
        return NULL;
    }
    begin = rdtsc();
    gettimeofday(&tv_begin, NULL);
    for (i = 0; i < INC_TO; i++)
    {
        global_int++;
    }
    gettimeofday(&tv_end, NULL);
    end = rdtsc();
    time_interval = (tv_end.tv_sec - tv_begin.tv_sec) * 1000000 + (tv_end.tv_usec - tv_begin.tv_usec);
    fprintf(stderr, "proc_num : %d, no lock cost %llu CPU cycle, cost %llu us\n", proc_num, end - begin, time_interval);
    
    return NULL;
}

int main()
{
    int procs = 0;
	int all_cores = 0;
    int i;
    pthread_t *thrs;

    procs = (int)sysconf(_SC_NPROCESSORS_ONLN);
    if (procs < 0)
    {
	    fprintf(stderr, "failed to fetch available CPUs(Cores)\n");
        return -1;
    }
	all_cores = (int)sysconf(_SC_NPROCESSORS_CONF);
	if (all_cores < 0)
	{
		fprintf(stderr, "failed to fetch system configure CPUs(Cores)\n");
		return -1;
	}
	
	printf("system configure CPUs(Cores): %d\n", all_cores);
	printf("system available CPUs(Cores): %d\n", procs);

    thrs = (pthread_t *)malloc(sizeof(pthread_t) * procs);
    if (thrs == NULL)
    {
        fprintf(stderr, "failed to malloc pthread array\n");
        return -1;
    }
	
    printf("starting %d threads...\n", procs);
    
    for (i = 0; i < procs; i++)
    {
        if (pthread_create(&thrs[i], NULL, thread_routine1, (void *)(long) i))
        {
			fprintf(stderr, "failed to pthread create\n");
            procs = i;
            break;
        }
    }

    for (i = 0; i < procs; i++)
    {
        pthread_join(thrs[i], NULL);
    }
  
    printf("after doing all the math, global_int value is: %d\n", global_int);
    printf("expected value is: %d\n", INC_TO * procs);

	free (thrs);
    
    return 0;
}
 
         运行结果如下:
         每次修改不同thread_routine?()函数,重新编译即可测试不同情况。
         g++ main.cpp -D _GNU_SOURCE -l pthread
         ./a.out
 
         不加锁下运行结果:
system configure CPUs(Cores): 8
system available CPUs(Cores): 8
starting 8 threads...
proc_num : 5, no lock cost 158839371 CPU cycle, cost 66253 us
proc_num : 6, no lock cost 163866879 CPU cycle, cost 68351 us
proc_num : 2, no lock cost 173866203 CPU cycle, cost 72521 us
proc_num : 7, no lock cost 181006344 CPU cycle, cost 75500 us
proc_num : 1, no lock cost 186387174 CPU cycle, cost 77728 us
proc_num : 0, no lock cost 186698304 CPU cycle, cost 77874 us
proc_num : 3, no lock cost 196089462 CPU cycle, cost 81790 us
proc_num : 4, no lock cost 200366793 CPU cycle, cost 83576 us
after doing all the math, global_int value is: 1743884
expected value is: 8000000

          线程锁下运行结果:
system configure CPUs(Cores): 8
system available CPUs(Cores): 8
starting 8 threads...
proc_num : 1, pthread_mutex_lock cost 9752929875 CPU cycle, cost 4068121 us
proc_num : 5, pthread_mutex_lock cost 10038570354 CPU cycle, cost 4187272 us
proc_num : 7, pthread_mutex_lock cost 10041209091 CPU cycle, cost 4188374 us
proc_num : 0, pthread_mutex_lock cost 10044102546 CPU cycle, cost 4189546 us
proc_num : 6, pthread_mutex_lock cost 10113533973 CPU cycle, cost 4218541 us
proc_num : 4, pthread_mutex_lock cost 10117540197 CPU cycle, cost 4220212 us
proc_num : 3, pthread_mutex_lock cost 10160384391 CPU cycle, cost 4238083 us
proc_num : 2, pthread_mutex_lock cost 10164464784 CPU cycle, cost 4239778 us
after doing all the math, global_int value is: 8000000
expected value is: 8000000

         原子操作__sync_fetch_and_add下运行结果:
system configure CPUs(Cores): 8
system available CPUs(Cores): 8
starting 8 threads...
proc_num : 3, __sync_fetch_and_add cost 2364148575 CPU cycle, cost 986129 us
proc_num : 1, __sync_fetch_and_add cost 2374990974 CPU cycle, cost 990652 us
proc_num : 2, __sync_fetch_and_add cost 2457930267 CPU cycle, cost 1025247 us
proc_num : 5, __sync_fetch_and_add cost 2463027030 CPU cycle, cost 1027373 us
proc_num : 7, __sync_fetch_and_add cost 2532240981 CPU cycle, cost 1056244 us
proc_num : 4, __sync_fetch_and_add cost 2555055054 CPU cycle, cost 1065760 us
proc_num : 0, __sync_fetch_and_add cost 2561248971 CPU cycle, cost 1068331 us
proc_num : 6, __sync_fetch_and_add cost 2558781396 CPU cycle, cost 1067314 us
after doing all the math, global_int value is: 8000000
expected value is: 8000000

通过测试结果可以看出:
 
        1. 不加锁的情况下,不能获得正确结果。

                测试结果表明,正确结果为8000000,而实际为1743884。表明多线程下修改全局计数,不加锁的话是错误的;

        2. 加锁情况下,无论是线程锁还是原子性操作,均可获得正确结果。

        3. 性能上__sync_fetch_and_add()完爆线程锁。

                从性能测试结果上看,__sync_fetch_and_add()速度大致是线程锁的4-5倍。

        

测试结果对比
类型平均CPU周期(circle)平均耗时(us)
不加锁18089006675449.13
线程锁100540919014193740.875
原子操作24834279061035881.25

 

注:如上的性能测试结果,表明__sync_fetch_and_add()速度大致是线程锁的4-5倍,而并非文献【1】中6-7倍。由此,怀疑可能是由不同机器、不同CPU导致的,上述测试是在一台8core的虚拟机上实验的。为此,我又在不同的机器上重复相同的测试。

         24cores实体机测试结果,表明__sync_fetch_and_add()速度大致只有线程锁的2-3倍。

24 cores实体机测试结果
类型平均CPU周期(circle)平均耗时(us)
不加锁535457026233310.5
线程锁93319154804066156.667
原子操作37699007951643463.625

       总体看来,原子操作__sync_fetch_and_add()大大的优于线程锁。


另外:

       上面介绍的原子操作参数里都有可扩展参数(...)用来指出哪些变量需要memory barrier,因为目前gcc实现的是full barrier(类似Linux kernel中的mb(),表示这个操作之前的所有内存操作不会被重排到这个操作之后),所以可以忽略掉这个参数。下面是有关memory barrier的东西。

        关于memory barrier, cpu会对我们的指令进行排序,一般说来会提高程序的效率,但有时候可能造成我们不希望看到的结果。举例说明,比如我们有一硬件设备,当你发出一个操作指令的时候,一个寄存器存的是你的操作指令(READ),两个寄存器存的是参数(比如地址和size),最后一个寄存器是控制寄存器,在所有的参数都设置好后向其发出指令,设备开始读取参数,执行命令,程序可能如下:
             write1(dev.register_size, size);
             write1(dev.register_addr, addr);
             write1(dev.register_cmd, READ);
             write1(dev.register_control, GO);

       如果CPU对我们的指令进行优化排序,导致最后一条write1被换到前几条语句之前,那么肯定不是我们所期望的,这时候我们可以在最后一条语句之前加入一个memory barrier,强制CPU执行完前面的写入后再执行最后一条:
             write1(dev.register_size, size);
             write1(dev.register_addr, addr);
             write1(dev.register_cmd, READ);
              __sync_synchronize();            发出一个full barrier
             write1(dev.register_control, GO);
 
memory barrier有几种类型:
      acquire barrier:不允许将barrier之后的内存读取指令移到barrier之前;(linux kernel中的wmb)
      release barrier:不允许将barrier之前的内存读取指令移到barrier之后;(linux kernel中的rmb)
      full barrier:以上两种barrier的合集;(linux kernel中的mb)
 
参考文献:
<think>我们正在处理一个关于V4L2_EVENT_FRAME_SYNC事件用于多视频流同步的应用程序开发问题。根据提供的引用,我们知道V4L2_EVENT_FRAME_SYNC是用于通知应用程序视频帧同步的事件,通常用于同步显示或处理视频帧[^1]。同时,引用[2]提到了一些使用V4L2订阅事件的注意事项。目标:在应用程序中使用V4L2_EVENT_FRAME_SYNC事件来实现多个视频流之间的同步。步骤:1.打开多个视频设备(每个视频流对应一个设备)。2.订阅每个设备上的V4L2_EVENT_FRAME_SYNC事件。3.等待事件发生,当事件发生时,读取帧并进行处理,以实现同步。具体实现步骤:1.打开设备:```cintfd1=open("/dev/video0",O_RDWR);intfd2=open("/dev/video1",O_RDWR);//检查fd1和fd2是否有效```2.订阅事件:使用`ioctl`调用`VIDIOC_SUBSCRIBE_EVENT`来订阅事件。首先需要设置事件类型为`V4L2_EVENT_FRAME_SYNC`。```cstructv4l2_event_subscriptionsub={0};sub.type=V4L2_EVENT_FRAME_SYNC;if(ioctl(fd1,VIDIOC_SUBSCRIBE_EVENT,&sub)){//错误处理}if(ioctl(fd2,VIDIOC_SUBSCRIBE_EVENT,&sub)){//错误处理}```3.等待事件并读取帧:在一个循环中,使用`select`或`poll`来等待多个设备的事件。当事件发生时,使用`ioctl`调用`VIDIOC_DQEVENT`来获取事件,然后读取视频帧。这里以`poll`为例:```cstructpollfdfds[2];fds[0].fd=fd1;fds[0].events=POLLPRI;//注意:事件通常使用POLLPRI(高优先级数据可读)fds[1].fd=fd2;fds[1].events=POLLPRI;while(1){intret=poll(fds,2,-1);//无限等待if(ret<0){//错误处理break;}//检查每个设备是否有事件for(inti=0;i<2;i++){if(fds[i].revents&POLLPRI){structv4l2_eventev;//使用VIDIOC_DQEVENT获取事件if(ioctl(fds[i].fd,VIDIOC_DQEVENT,&ev)==0){if(ev.type==V4L2_EVENT_FRAME_SYNC){//读取视频帧//这里需要根据设备进行读取帧的操作,例如使用VIDIOC_DQBUF}}}}//同步处理:当两个设备都有一帧数据时,进行同步操作(例如同时显示)//注意:实际同步逻辑需要根据应用需求设计,比如等待两个流都收到事件后再同时处理帧。}```4.同步逻辑:为了实现多个视频流的同步,我们需要确保同时处理多个流的帧。一种简单的策略是等待所有流都收到一个帧同步事件(即同一个时间点的帧),然后一起处理这些帧。我们可以设置一个计数器,每次收到一个流的帧同步事件就增加计数,当计数达到流的总数时,就处理所有流的当前帧,然后重置计数器。但是注意:不同设备的事件可能不是同时到达,所以需要设置一个超时机制,防止某个流长时间没有事件导致死。更复杂的同步可能需要使用时间戳,比较帧的时间戳是否一致。5.读取帧:在事件发生后,通常需要从视频缓冲区中取出帧。这涉及到V4L2的缓冲区管理(请求缓冲区、入队和出队缓冲区)。这里假设已经初始化了视频捕获(已经设置格式、请求缓冲区等)。在事件发生后,我们可以执行:```cstructv4l2_bufferbuf={0};buf.type=V4L2_BUF_TYPE_VIDEO_CAPTURE;buf.memory=V4L2_MEMORY_MMAP;if(ioctl(fd,VIDIOC_DQBUF,&buf)==0){//处理buf.index指向的缓冲区数据//...//处理完后,将缓冲区重新入队ioctl(fd,VIDIOC_QBUF,&buf);}```6.关闭设备:在退出时,取消事件订阅并关闭设备。```c//取消订阅事件sub.type=V4L2_EVENT_FRAME_SYNC;ioctl(fd1,VIDIOC_UNSUBSCRIBE_EVENT,&sub);ioctl(fd2,VIDIOC_UNSUBSCRIBE_EVENT,&sub);close(fd1);close(fd2);```注意事项:-确保设备支持`V4L2_EVENT_FRAME_SYNC`事件(参考引用[1])。-错误处理和多线程安全(参考引用[2])。-同步逻辑的设计需要根据具体应用场景调整。示例代码片段(简化的同步逻辑):```c#include<linux/videodev2.h>#include<sys/ioctl.h>#include<sys/poll.h>#include<fcntl.h>#include<unistd.h>#include<stdio.h>intmain(){intfd0=open("/dev/video0",O_RDWR);intfd1=open("/dev/video1",O_RDWR);//初始化设备(设置格式、请求缓冲区等)...//订阅事件structv4l2_event_subscriptionsub={0};sub.type=V4L2_EVENT_FRAME_SYNC;ioctl(fd0,VIDIOC_SUBSCRIBE_EVENT,&sub);ioctl(fd1,VIDIOC_SUBSCRIBE_EVENT,&sub);structpollfdfds[2]={{.fd=fd0,.events=POLLPRI},{.fd=fd1,.events=POLLPRI}};intframe_ready[2]={0};//标记每个流是否收到帧同步事件while(1){poll(fds,2,-1);for(inti=0;i<2;i++){if(fds[i].revents&POLLPRI){structv4l2_eventev;ioctl(fds[i].fd,VIDIOC_DQEVENT,&ev);if(ev.type==V4L2_EVENT_FRAME_SYNC){frame_ready[i]=1;//标记该流帧就绪}}}//检查是否所有流都就绪if(frame_ready[0]&&frame_ready[1]){//处理两个流的帧(读取、显示等)//这里需要分别从两个设备中取出缓冲区(DQBUF)进行处理//然后重置frame_ready数组frame_ready[0]=0;frame_ready[1]=0;}}//取消订阅和关闭设备...return0;}```注意:上述代码仅为示例,实际应用中需要处理缓冲区管理、错误处理、退出条件等。引用说明:-事件类型`V4L2_EVENT_FRAME_SYNC`的定义和用途参考了引用[1]。-订阅事件的使用注意事项参考了引用[2]。§§相关问题§§1.V4L2_EVENT_FRAME_SYNC事件如何保证不同视频流之间的帧同步精度?2.在V4L2多视频流同步中,如何处理不同分辨率和帧率的设备?3.除了V4L2_EVENT_FRAME_SYNC,还有哪些V4L2事件可以用于视频同步?</think>### 在应用程序中使用V4L2_EVENT_FRAME_SYNC实现多视频流同步 #### 核心概念 V4L2_EVENT_FRAME_SYNC是Linux视频子系统(V4L2)提供的事件通知机制,用于实现硬件级视频帧同步。当多个摄像头需要精确协调帧捕获时(如立体视觉、多视角拍摄),该事件会通知应用程序所有相关设备已完成帧捕获准备[^1]。 #### 实现步骤 1. **设备初始化与事件订阅** ```c // 打开多个视频设备 int fd_cam1 = open("/dev/video0", O_RDWR); int fd_cam2 = open("/dev/video1", O_RDWR); // 订阅帧同步事件 struct v4l2_event_subscription sub = { .type = V4L2_EVENT_FRAME_SYNC // 关键事件类型 }; ioctl(fd_cam1, VIDIOC_SUBSCRIBE_EVENT, &sub); ioctl(fd_cam2, VIDIOC_SUBSCRIBE_EVENT, &sub); ``` 2. **事件等待循环** ```c struct pollfd fds[] = { { .fd = fd_cam1, .events = POLLPRI }, { .fd = fd_cam2, .events = POLLPRI } }; while (1) { poll(fds, 2, -1); // 阻塞等待事件 for (int i=0; i<2; i++) { if (fds[i].revents & POLLPRI) { struct v4l2_event ev; ioctl(fds[i].fd, VIDIOC_DQEVENT, &ev); // 出队事件 if (ev.type == V4L2_EVENT_FRAME_SYNC) { // 获取同步帧 struct v4l2_buffer buf = { .type = V4L2_BUF_TYPE_VIDEO_CAPTURE, .memory = V4L2_MEMORY_MMAP }; ioctl(fds[i].fd, VIDIOC_DQBUF, &buf); // 处理同步帧数据 process_frame(buf.index, i); } } } } ``` 3. **同步处理逻辑** ```c void process_frame(int buf_index, int cam_id) { static atomic_int frame_count = 0; // 原子操作确保线程安全 int current = __atomic_add_fetch(&frame_count, 1, __ATOMIC_SEQ_CST); if (current % 2 == 0) { // 等待两个摄像头都就绪 // 执行同步操作(如立体匹配、3D重建) stereo_match( get_frame(cam1_buffers), get_frame(cam2_buffers) ); // 重置计数器 __atomic_store_n(&frame_count, 0, __ATOMIC_RELEASE); } } ``` #### 关键注意事项 1. **硬件支持验证** 需确认摄像头驱动支持`V4L2_EVENT_FRAME_SYNC`(通过`v4l2-ctl --list-event`命令检查)[^2] 2. **时间戳同步** 结合`v4l2_buffer.timestamp`实现精确同步: ```c struct timeval cam1_ts, cam2_ts; ioctl(fd_cam1, VIDIOC_QUERYBUF, &buf1); ioctl(fd_cam2, VIDIOC_QUERYBUF, &buf2); if (abs(cam1_ts.tv_usec - cam2_ts.tv_usec) < SYNC_THRESHOLD) { // 执行同步处理 } ``` 3. **多线程优化** 建议采用生产者-消费者模型: - 专用线程处理事件通知 - 工作线程池处理帧数据 - 双缓冲区避免数据竞争 #### 典型应用场景 1. **双目立体视觉**:同步获取左右眼图像进行深度计算 2. **全景拼接**:多摄像头同步捕获实现无缝拼接 3. **动作捕捉**:多角度同步拍摄运动物体 4. **工业检测**:多传感器时间对齐的系统[^5] > **提示**:实际开发中需结合`v4l2-ctl`工具验证设备能力: > ```bash > v4l2-ctl -d /dev/video0 --list-events > ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值