算法导论 第9章 排序和顺序统计学算法导论

一、概念

第i个顺序统计量是该集合中第i小的元素。
当n为奇数时,中位数是出现在i=(n+1)/2处的数。当n为偶数时,中位数分别出现在i=n/2和i=(n+1)/2处。
在本文中,忽略n的奇偶性,中位数是指出现在i=(n+1)/2处的数。
本文假设集合中的数互异。

二、代码

#include <iostream>
using namespace std;
//书中的程序
int length_A;
void Print(int *A)
{
	int i;
	for(i = 1; i <= length_A; i++)
		cout<<A[i]<<' ';
	cout<<endl;
}
/***********线性时间求最小值******************************************************/
int Minimun(int *A)
{
	int Min = A[1], i;
	//依次查看集合中的每个元素
	for(i = 2; i < length_A; i++)
		//记录比较过程中最小的元素
		if(Min > A[i])
			Min = A[i];
	return Min;
}
/***********通过3n/2次比较求最小值和最大值******************************************************/
void MinAndMax(int *A,int &Min, int &Max)
{
	int i;
	//如果n是奇数
	if(length_A % 2 == 1)
	{
		//将最大值和最小值设置为第一个元素
		Min = A[1];
		Max = A[1];
		i = 2;
	}
	//如果n是偶数
	else
	{
		//将前两个元素作一次比较,以决定最大值怀最小值的初值
		Min = min(A[1], A[2]);
		Max = A[1] + A[2] - Min;
		i = 3;
	}
	//成对地处理余下的元素
	for(; i <= length_A; i=i+2)
	{
		//将一对输入元素互相比较
		int a = min(A[i], A[i+1]);
		int b = A[i] + A[i+1] - a;
		//把较小者与当前最小值比较
		if(a < Min)
			Min = a;
		//把较大者与当前最大值比较
		if(b > Max)
			Max = b;
	}
}
/**************以期望线性时间作选择**************************************/
//已经出现很多次了,不解释
int Partition(int *A, int p, int r)
{
	int x = A[r], i = p-1, j;
	for(j = p; j < r; j++)
	{
		if(A[j] <= x)
		{
			i++;
			swap(A[i], A[j]);
		}
	}
	swap(A[i+1], A[r]);
	return i+1;
}

int Randomized_Partition(int *A, int p, int r)
{
	//随机选择数组中一个数作为主元
	int i = rand() % (r-p+1) + p;
	swap(A[r], A[i]);
	//划分
	return Partition(A, p, r);
}
//i是从1开使计数的,不是从p开始
int Randomized_Select(int *A, int p, int r, int i)
{
	if(p == r)
		return A[p];
	//以某个元素为主元,把数组分为两组,A[p..q-1] < A[q] < A[q+1..r],返回主元在整个数组中的位置
	int q = Randomized_Partition(A, p, r);
	//主元是整个数组中的第q个元素,是A[p..r]数组中的第k个元素
	int k = q - p + 1;
	//所求的i中A[p..r]中的第i个元素
	if(i == k)//正是所求的元素
		return A[q];
	else if(i < k)//所求元素<主元,则在A[p..q-1]中继续寻找
		return Randomized_Select(A, p, q-1, i);
	else//所求元素>主元,则在A[q+1..r]中继续寻找
		return Randomized_Select(A, q+1, r, i-k);
}
/*************最坏情况线性时间的选择**************************************************/
int Select(int *A, int p, int r, int i);
//对每一组从start到end进行插入排序,并返回中值
//插入排序很简单,不解释
int Insert(int *A, int start, int end, int k)
{
	int i, j;
	for(i = 2; i <= end; i++)
	{
		int t = A[i];
		for(j = i; j >= start; j--)
		{
			if(j == start)
				A[j] = t;
			else if(A[j-1] > t)
				A[j] = A[j-1];
			else
			{
				A[j] = t;
				break;
			}
		}
	}
	return A[start+k-1];
}
//根据文中的算法,找到中值的中值
int Find(int *A, int p, int r)
{
	int i, j = 0;
	int start, end, len = r - p + 1;
	int *B = new int[len/5+1];
	//每5个元素一组,长度为start到end,对每一组进行插入排序,并返回中值
	for(i = 1; i <= len; i++)
	{
		if(i % 5 == 1)
			start = i+p-1;
		if(i % 5 == 0 || i == len)
		{
			j++;
			end = i+p-1;
			//对每一组从start到end进行插入排序,并返回中值,如果是最后一组,组中元素个数可能少于5
			int ret = Insert(A, start, end, (end-start)/2+1);
			//把每一组的中值挑出来形成一个新的数组
			B[j] = ret;	
		}
	}
	//对这个数组以递归调用Select()的方式寻找中值
	int ret = Select(B, 1, j, (j+1)/2);
	//delete []B; //很奇怪,这句话应该是没问题的,但是怎么一运行到这句话就死机呢?
	return ret;
}
//以f为主元的划分
int Partition2(int *A, int p, int r, int f)
{
	int i;
	//找到f的位置并让它与A[r]交换
	for(i = p; i < r; i++)
	{
		if(A[i] == f)
		{
			swap(A[i], A[r]);
			break;
		}
	}
	return Partition(A, p, r);
}
//寻找数组A[p..r]中的第i大的元素,i是从1开始计数,不是从p开始
int Select(int *A, int p, int r, int i)
{
	//如果数组中只有一个元素,则直接返回
	if(p == r)
		return A[p];
	//根据文中的算法,找到中值的中值
	int f = Find(A, p, r);
	//以这个中值为主元的划分,返回中值在整个数组A[1..len]的位置
	//因为主元是数组中的某个元素,划分好是这样的,A[p..q-1] <= f < A[q+1..r]
	int q = Partition2(A, p, r, f);
	//转换为中值在在数组A[p..r]中的位置
	int k = q - p + 1;
	//与所寻找的元素相比较
	if(i == k)
		return A[q];
	else if(i < k)
		return Select(A, p, q-1, i);
	else
		//如果主元是数组中的某个元素,后面一半要这样写
		return Select(A, q+1, r, i-k);
		//但是如果主元不是数组中的个某个元素,后面一半要改成Select(A, q, r, i-k+1)
}
int main()
{
	cin>>length_A;
	int *A = new int[length_A+1], i, cnt;
	//生成测试数据
	for(i = 1; i <= length_A; i++)
		A[i] = rand() % 100;
	cin>>cnt;
	//显示测试数据
	Print(A);
	//输出结果
	if(cnt <= length_A)
		cout<<Select(A, 1, length_A, cnt)<<endl;
	return 0;
}


 

三、习题

9.1 最小值和最大值

9.1-1

9.2 以期望线性时间做选择

9.2-3
RANDOMIZED-SELECT(A, p, r, i)
 1    while true
 2        if p = r
 3            then return A[p]
 4        q <- RANDIMIZED-PARTITION(A, p, r)
 5        k <- q - p + 1
 6        if i = k
 7            then return A[q]
 8        else if i < k
 9            then q <- q-1
10        else
11            q <- q + 1
12            i <- i - k
9.2-4
    A = {3, 2, 9, 0, 7, 5, 4, 8, 6, 1}
==> A = {3, 2, 0, 7, 5, 4, 8, 6, 1, 9}
==> A = {3, 2, 0, 7, 5, 4, 6, 1, 8, 9}
==> A = {3, 2, 0, 5, 4, 6, 1, 7, 8, 9}
==> A = {3, 2, 0, 5, 4, 1, 6, 7, 8, 9}
==> A = {3, 2, 0, 4, 1, 5, 6, 7, 8, 9}
==> A = {3, 2, 0, 1, 4, 5, 6, 7, 8, 9}
==> A = {2, 0, 1, 3, 4, 5, 6, 7, 8, 9}
==> A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
==> A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
==> A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}


9.3 最坏情况线性时间的选择

9.3-3

先中SELECT选择中值,再用这个中值进行划分,代码见算法导论-9.3-3

QUICKSORT(A, p, r)
1    if p > r
2        then return
3    i <- (r-p+1) / 2
4    x <- SELECT(A, p, r, i)
5    q <- PARTITION(A, p, r, x) //以x为主元的划分
6    QUICKSORT(A, p, q-1)
7    QUICKSORT(A, q+1, r)


9.3-5

SELECT(A, p, r, i)
1    if p = r
2        then return A[p]
3    x <- MEDIAN(A, p, r)
4    q <- PARTITION(A, p, r, x) //以x为主元的划分
5    k <- q - p + 1
6    if i = k
7        then return A[q]
8    else if i < k
9        then return SELECT(A, p, q-1, i)
10    else return SELECT(A, q+1, r, i-k)


 9.3-6

令每个子集合的元素个数为t = n / k,A[j]是数组A中下标为j的元素,A(j)是数组是第j大的元素

则所求的k分位数是指A(t),A(2t),A(3t),……,A((k-1)t)

按顺序依次求这k-1个数的运行时(k-1)*n

要使运行时间为O(nlgk),改进方法是不要依次寻找这k-1个数,而是借用二分的方法来找。

先找第k/2个分位数,再以这个分位数为主元把数组分为两段,分别对这两段来找分位数,这个时候找的范围变小了,效率也就提高了

算法导论-9.3-6

9.3-7

step1:求出数组的中位数的值O(n)

step2:计算数组每个数与中位数差的绝对值,存于另一个数组B中O(n)

step3:求出数组B中第k小的数ret O(n)

step4:计算数组S中与ret差的绝对值小于ret的数并输出O(n)

其中,step4也可以通过划分的方法找出数组S中与ret差的绝对值小于ret的数

代码见算法导论-9.3-7

9.3-8

递归求解该问题,解题规模不断减半,最后剩下4个元素时,得到问题的解

分别取两个数组的中值minA和minB进行比较

如果minA=minB,那么这个值就是结果

否则,小的那个所在的数组去掉前面一半,大的那个去掉后面一半。(对于两个数组的中值,共有n-1个元素,有n个元素比它大。但是对于min(minA,minB),最多只有n-2个元素比它小,所以一定不是所求的结果,同理去掉大的一半)

然后对剩余的两个数组,用同的方法求它们的中值,直到两个数组一共剩下4个元素

代码见算法导论-9.3-8

9.3-9

这题其实挺简单的,就是不一定能找到这个规律。

为了简化这道题,不考虑点的y坐标,假设所有的点都在一条与管道垂直的线上

假如有两个点AB,分别在管道l的上下,那么不管这条管道在什么位置(只要在AB之间),d[Al]+d[bl]=d[AB]。

根据以上规律,把每两个点分为一组,第i组中的点是(第i大的点,第i小的点),只要管道在每组的两个点之间,就能保证长度总和最小。

由以上推理得出答案:

令所以x作为的中值为s(i),

如果点的个数是奇数,管道过s(i)点

如果点的个数是偶数,管道位于点s(i)和s(i+1)之间(包括这两点)

 

四、思考题

9-1 已排序的i个最大数

a)合并排序和堆排序,O(nlgn)
b)堆排序,O(n+ilgn)
c)快速排序,O(n+ilgi)


9-2 带权中位数

b)

使用最坏情况时间为O(nlgn)的排序算法对每个元素进行排序

依次累加元素的权重,直到满足题目中公式

c)

step1:利用SELECT中寻找中值的中值的算法,找到主元

step2:用主元把数组分为三段,即A[1..q-1] < A[q] < A[q+1..r]

step3:计算A[1..q-1]<0.5和A[1..q]>=0.5的权值和,是否满足题目中的公式

step4:若满足,A[q]就是所求的数

step5:若不满足,就继续递归使用本算法进行递归查找。偏大就找前半段,偏小就找后半段

代码见算法导论-9-2-c-带权中位数

邮局位置问题:

关键是d)的结论

 

9-3 小型顺序统计量

a)待解决

  • 6
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值