一共也没几页,就是教一个算法,求一个集合中,第i个大的元素,并控制在线性时间内。
这个又是一个典型的递归,用到了前面的随机算法,关于递归,不想多说,前面实在说了很多,两种理解方式,表面的理解,深入的递归理解。只要你能明白,哪种方式都可以。
第i个顺序统计量:在一个由n个元素组成的集合中,第i个顺序统计量(order statistic)是该集合中第i小的元素。
最小值是第1个顺序统计量(i=1)
最大值是第n个顺序统计量(i=n)
中位数:一个中位数(median)是它所在集合的“中点元素”,当n为奇数时,i=(n+1)/2,当n为偶数是,中位数总是出现在 (下中位数)和 (上中位数)。
找最大值/最小值问题,通过比较n-1次可以得出结果。这个可以参照书p108页,不想多说。
如果是一般的选择问题,即找出一段序列第i小的数,看起来要比找最大值或最小值要麻烦,其实两种问题的渐进时间都是 。
RANDOMIZED-SELECT(A, p, r, i)
if p = r
then return A[p]
q ← RANDOMIZED-PARTITION(A, p, r)
k ← q - p + 1
if i = k ▹ the pivot value is the answer
then return A[q]
elseif i < k
then return RANDOMIZED-SELECT(A, p, q - 1, i)
else return RANDOMIZED-SELECT(A, q + 1, r, i - k)
这个又是一个典型的递归,用到了前面的随机算法,关于递归,不想多说,前面实在说了很多,两种理解方式,表面的理解,深入的递归理解。只要你能明白,哪种方式都可以。
最后一句重要结论:
在平均情况下,任何顺序统计量都可以在线性时间内得到。