时域、频域、空间域

部署运行你感兴趣的模型镜像

时域、频域、空间域



一、什么是时域

    时域是描述数学函数物理信号对时间的关系。例如一个信号的时域波形可以表达信号随着时间的变化。

二、什么是频域

    频域(频率域)——自变量是频率,即横轴是频率,纵轴是该频率信号的幅度,也就是通常说的频谱图。频谱图描述了信号的频率结构及频率与该频率信号幅度的关系。

三、什么是空间域

   空间域又称图像空间(image space)。由图像像元组成的空间。在图像空间中以长度(距离)为自变量直接对像元值进行处理称为空间域处理。


以时间作为变量所进行的研究就是时域

以频率作为变量所进行的研究就是频域

以空间坐标作为变量进行的研究就是空间域

以波数作为变量所进行的研究称为波数域


时域和频域

本文是转载的,感谢耐心编辑以下知识的同仁,由于忘记了链接,所以只能在此致以谢意。

 

最近在上数字图像处理,时域和频域的概念我没有直观的概念,搜索一下,归纳如下:

1.最简单的解释

频域就是频率域,

平常我们用的是时域,是和时间有关的,

这里只和频率有关,是时间域的倒数。时域中,X轴是时间,

频域中是频率。频域就是分析它的频率特性!

2. 图像处理中:

  空间域,频域,变换域,压缩域等概念!

只是说要将图像变换到另一种域中,然后有利于进行处理和计算

比如说:图像经过一定的变换(Fourier变换,离散yuxua DCT 变换),图像的频谱函数统计特性:图像的大部分能量集中在低,中频,高频部分的分量很弱,仅仅体现了图像的某些细节。

2.离散傅立叶变换

一般有离散傅立叶变换和其逆变换

3.DCT变换

示波器用来看时域内容,频普仪用来看频域内容!!!

时域是信号在时间轴随时间变化的总体概括。

频域是把时域波形的表达式做傅立叶变化得到复频域的表达式,所画出的波形就是频谱图。是描述频率变化和幅度变化的关系。

时域做频谱分析变换到频域;空间域做频谱分析变换到波数域;

信号通过系统,在时域中表现为卷积,而在频域中表现为相乘。

无论是傅立叶变换还是小波变换,其实质都是一样的,既:将信号在时间域和频率域之间相互转换,从看似复杂的数据中找出一些直观的信息,再对它进行分 析。由于信号往往在频域比有在时域更加简单和直观的特性,所以,大部分信号分析的工作是在频域中进行的。音乐——其实就是时/频分析的一个极好例子,乐谱 就是音乐在频域的信号分布,而音乐就是将乐谱变换到时域之后的函数。从音乐到乐谱,是一次傅立叶或小波变换;从乐谱到音乐,就是一次傅立叶或小波逆变换。

 时域(时间域)——自变量是时间,即横轴是时间,纵轴是信号的变化。其动态信号x(t)是描述信号在不同时刻取值的函数。
频域(频率域)——自变量是频率,即横轴是频率,纵轴是该频率信号的幅度,也就是通常说的频谱图。频谱图描述了信号的频率结构及频率与该频率信号幅度的关系。
对信号进行时域分析时,有时一些信号的时域参数相同,但并不能说明信号就完全相同。因为信号不仅随时间变化,还与频率、相位等信息有关,这就需要进一步分析信号的频率结构,并在频率域中对信号进行描述。
动态信号从时间域变换到频率域主要通过傅立叶级数和傅立叶变换实现。周期信号靠傅立叶级数,非周期信号靠傅立叶变换。

很简单时域分析的函数是参数是t,也就是y=f(t),频域分析时,参数是w,也就是y=F(w)
两者之间可以互相转化。时域函数通过傅立叶或者拉普拉斯变换就变成了频域函数。


词目: 空间频率域。

 英文: spatial frequency domain。 

释文: 以空间频率(即波数)为自变量描述图像的特征,可以将一幅图像像元值在空间上的变化分解为具有不同振幅、空间频率和相位的简振函数的线性叠加,图像中各种空问频率成分的组成和分布称为空间频谱。

这种对图像的空间频率特征进行分解、处理和分析称为空间频率域处理或波数域处理。

和时间域与频率域可互相转换相似,空间域与空间频率域也可互相转换。

在空间频率域中可以引用已经很成熟的频率域技术,处理的一般步骤为:

①对图像施行二维离散傅立叶变换或小波变换,将图像由图像空间转换到频域空间。

②在空间频率域中对图像的频谱作分析处理,以改变图像的频率特征。

即设计不同的数字滤波器,对图像的频谱进行滤波。频率域处理主要用于与图像空间频率有关的处理中。

如图像恢复、图像重建、辐射变换、边缘增强、图像锐化、图像平滑、噪声压制、频谱分析、纹理分析等处理和分析中。

须注意,空间频率(波数)的单位为米 -l或(毫米)-1等。

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

### 空间域时域信号转频域的技术与方法 #### 傅里叶变换的基础概念 傅里叶变换是一种将时域空间域中的信号分解为不同频率分量的工具。通过这种变换,可以揭示信号在频域上的特性。对于连续时间信号 \( x(t) \),其对应的连续时间傅里叶变换 (CTFT) 表达式如下: \[ X(f) = \int_{-\infty}^\infty x(t)e^{-j2\pi ft}\,dt \] 然而,在实际应用中,由于大多数数据是以离散形式存在的,因此更常用的是离散傅里叶变换 (DFT)[^1]。 --- #### 离散傅里叶变换 (DFT) 离散傅里叶变换用于分析有限长度的离散序列。给定一个长度为 \( N \) 的离散信号 \( x[n] \),它的 DFT 定义为: \[ X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi kn/N}, \quad k = 0, 1, ..., N-1 \] 其中,\( X[k] \) 是第 \( k \) 频率分量的幅度和相位信息。DFT 提供了一种精确计算频谱的方式,但由于其复杂度较高 (\( O(N^2) \)),通常不适用于大规模数据集。 --- #### 快速傅里叶变换 (FFT) 快速傅里叶变换是对 DFT 进行优化的一种算法,能够显著降低计算复杂度至 \( O(N\log_2N) \)。FFT 利用了旋转因子 \( e^{-j2\pi /N} \) 的周期性和对称性来减少冗余运算。以下是基于 Cooley-Tukey 算法的一个简单实现示例: ```python import numpy as np def fft(x): """ 实现快速傅里叶变换 (Cooley-Tukey Algorithm) :param x: 输入的一维数组 :return: 变换后的频域表示 """ n = len(x) if n <= 1: return x even = fft(x[::2]) odd = fft(x[1::2]) factor = np.exp(-2j * np.pi * np.arange(n) / n) return np.concatenate([even + factor[:n//2]*odd, even + factor[n//2:] * odd]) # 测试代码 if __name__ == "__main__": signal = [1, 2, 3, 4] freq_domain_signal = fft(signal) print(freq_domain_signal) ``` 上述代码展示了如何利用递归方式实现 FFT,并将其应用于简单的输入信号上。 --- #### 数字信号处理中的采样理论 为了从模拟信号获得离散信号并进行频域分析,需遵循奈奎斯特采样定理。该定理指出,如果要无失真地重建原始信号,则采样频率 \( f_s \) 至少应为最高频率成分 \( f_m \) 的两倍,即 \( f_s \geq 2f_m \)。 此外,归一化角频率常被定义为相对于采样频率的比例值,单位为弧度/样本。它有助于简化数字滤波器设计过程中的参数表达。 --- #### DTFT 和其他变换之间的联系 离散时间傅里叶变换 (DTFT) 是一种针对无限长离散序列的频域表示方法。尽管如此,当面对有限长序列时,可以通过补零等方式扩展成无穷序列再求解其 DTFT;而实际上这正是 DFT 所做的近似操作之一。 至于拉普拉斯变换和 Z 变换,则分别对应于连续时间和离散时间系统的复频域描述手段。它们之间存在密切关联——具体来说,Z 变换可视为离散版本的双边拉普拉斯变换,即将 s 平面映射到了 z 平面上。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值