白话经典算法系列之三 希尔排序的实现

原创 2011年08月08日 11:41:40

希尔排序的实质就是分组插入排序,该方法又称缩小增量排序,因DL.Shell于1959年提出而得名。

 

该方法的基本思想是:先将整个待排元素序列分割成若干个子序列(由相隔某个“增量”的元素组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中的元素基本有序(增量足够小)时,再对全体元素进行一次直接插入排序。因为直接插入排序在元素基本有序的情况下(接近最好情况),效率是很高的,因此希尔排序在时间效率上比前两种方法有较大提高。

 

以n=10的一个数组49, 38, 65, 97, 26, 13, 27, 49, 55, 4为例

第一次 gap = 10 / 2 = 5

49   38   65   97   26   13   27   49   55   4

1A                                        1B

        2A                                         2B

                 3A                                         3B

                         4A                                          4B

                                  5A                                         5B

1A,1B,2A,2B等为分组标记,数字相同的表示在同一组,大写字母表示是该组的第几个元素, 每次对同一组的数据进行直接插入排序。即分成了五组(49, 13) (38, 27) (65, 49)  (97, 55)  (26, 4)这样每组排序后就变成了(13, 49)  (27, 38)  (49, 65)  (55, 97)  (4, 26),下同。

第二次 gap = 5 / 2 = 2

排序后

13   27   49   55   4    49   38   65   97   26

1A             1B             1C              1D            1E

        2A               2B             2C             2D              2E

第三次 gap = 2 / 2 = 1

4   26   13   27   38    49   49   55   97   65

1A   1B     1C    1D    1E      1F     1G    1H     1I     1J

第四次 gap = 1 / 2 = 0 排序完成得到数组:

4   13   26   27   38    49   49   55   65   97

 

下面给出严格按照定义来写的希尔排序

void shellsort1(int a[], int n)
{
	int i, j, gap;

	for (gap = n / 2; gap > 0; gap /= 2) //步长
		for (i = 0; i < gap; i++)        //直接插入排序
		{
			for (j = i + gap; j < n; j += gap) 
				if (a[j] < a[j - gap])
				{
					int temp = a[j];
					int k = j - gap;
					while (k >= 0 && a[k] > temp)
					{
						a[k + gap] = a[k];
						k -= gap;
					}
					a[k + gap] = temp;
				}
		}
}

很明显,上面的shellsort1代码虽然对直观的理解希尔排序有帮助,但代码量太大了,不够简洁清晰。因此进行下改进和优化,以第二次排序为例,原来是每次从1A到1E,从2A到2E,可以改成从1B开始,先和1A比较,然后取2B与2A比较,再取1C与前面自己组内的数据比较…….。这种每次从数组第gap个元素开始,每个元素与自己组内的数据进行直接插入排序显然也是正确的。

void shellsort2(int a[], int n)
{
	int j, gap;
	
	for (gap = n / 2; gap > 0; gap /= 2)
		for (j = gap; j < n; j++)//从数组第gap个元素开始
			if (a[j] < a[j - gap])//每个元素与自己组内的数据进行直接插入排序
			{
				int temp = a[j];
				int k = j - gap;
				while (k >= 0 && a[k] > temp)
				{
					a[k + gap] = a[k];
					k -= gap;
				}
				a[k + gap] = temp;
			}
}


再将直接插入排序部分用 白话经典算法系列之二 直接插入排序的三种实现  中直接插入排序的第三种方法来改写下:

void shellsort3(int a[], int n)
{
	int i, j, gap;

	for (gap = n / 2; gap > 0; gap /= 2)
		for (i = gap; i < n; i++)
			for (j = i - gap; j >= 0 && a[j] > a[j + gap]; j -= gap)
				Swap(a[j], a[j + gap]);
}

这样代码就变得非常简洁了。

  

附注:上面希尔排序的步长选择都是从n/2开始,每次再减半,直到最后为1。其实也可以有另外的更高效的步长选择,如果读者有兴趣了解,请参阅维基百科上对希尔排序步长的说明:

http://zh.wikipedia.org/wiki/%E5%B8%8C%E5%B0%94%E6%8E%92%E5%BA%8F

 

版权声明:本文为博主原创文章,未经博主允许不得转载。

最详细的希尔排序,shell排序方法,一步一步调试

C程序设计语言摘来的,其基本思想是:先比较距离远的元素,而不是像简单交换排序算法那样先比较相邻的元素,这样可以快速减少大量的无序情况,从而减轻后续的工作。被比较的元素之间的距离逐步减少,直到减少为1,...

希尔排序理解

转载地址: http://blog.csdn.net/cjf_iceking/article/details/7951481  插入排序的算法复杂度为O(n2),但如果序列为正序可提高到O(n),...

希尔排序的算法思想与实现

希尔排序基本思想:   先取一个小于n的整数d1作为第一个增量,把文件的全部记录分成d1个组。所有距离为d1的倍数的记录放在同一个组中。先在各组内进行直接插入排序;然后,取第二个增量d2  该方法实质...

希尔排序

插入排序的算法复杂度为O(n2),但如果序列为正序可提高到O(n),而且直接插入排序算法比较简单,希尔排序利用这两点得到了一种改进后的插入排序。 一. 算法描述 希尔排序:将无序数组分割为若干...

希尔排序

一.首先我们先看一下百度上的原理                      举个例子:                                             这个算法其实就...

【算法-排序之四】希尔排序

算法-排序之希尔排序     希尔排序得名于其设计者设计者希尔(Donald Shell),设计体现了计算机领域的“分治法”思想。在众多排序算法中,目前而言,希尔排序是唯一能在效率上与快...

希尔排序

给你10个指定的数字12,2,16,30,28,10,16,20,6,18,用希尔排序的方法把这十个数从小到大的排列 定义一个顺序表,对顺序表进行初始化赋值存入这十个数字,然后用希尔排序进行排序。希...

排序 7 - 希尔排序

参考:排序 0 - 前言百度百科:希尔排序希尔排序(shell sort)工作原理直接插入排序的改进,设置步长,对间隔步长大小的数据进行直接插入排序,不断减小步长,直至步长大小为 1。也称为缩小增量排...

八大排序算法

概述 排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。 我们这里说说八大排序就是内部排序。   ...
  • hguisu
  • hguisu
  • 2012年07月23日 16:45
  • 810689

【排序算法】希尔排序

希尔排序--不需要大量的辅助空间,和归并排序一样容易实现。希尔排序是基于插入排序的一种算法, 在此算法基础之上增加了一个新的特性,提高了效率。     先取一个小于n的整数d1作为第一个增量,把...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:白话经典算法系列之三 希尔排序的实现
举报原因:
原因补充:

(最多只允许输入30个字)