树状数组

/*
      树状数组是一个查询和修改复杂度都为log(n)级别的区间统计的数据结构,在思想上类似于线段树。注意:这里的修改指的是将A[i]加上某个值v,而不能将A[i]的值设定为v.
相比线段树,树状数组需要的空间较少,编程复杂度也较低,但适用范围比线段树小。
有一个包含n个元素的数组A[],函数Change(i, j)要修改一个元素A[i]=j;函数Query(i)询问前缀Si=A1+A2+...+Ai的值。
如何设计算法,使得修改和询问操作的时间复杂度尽量低?
设一个数组C[]:     */
C1 = A1
C2 = A1 + A2
C3 = A3
C4 = A1 + A2 + A3 + A4
C5 = A5
C6 = A5 + A6
C7 = A7
C8 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8
......
C16 = A1 + A2 + ... +A15 + A16
......
/*
其中有一个有趣的性质:
Cx结点管辖的区间为2^k(其中k为x的二进制末尾0的个数)个连续的元素,又因为这个区间的最后一个元素一定是Ax,
所以很明显: C[x] = A[x-2^k+1] + ... + Ax;
算这个2^k有一个快捷的办法,用下面这个函数:    */
int lowbit(int x)
{
   return x&(-x);  //由原始的x&(x^(x-1))变换而来
}
/*
把A[i]增加v,对于一般的数组只需要改变A[i]就行了,但是对于树状数组,就要把和A[i]相关的C[j]都改变
(C[i, i+lowbit(i), i+lowbit(i+lowbit(i)),.....]),这样做是为了后面能够更高效地求和:   */
void add(int i, int v)
{
    while (i <= n)
    {
        C[i] += v;
        i += lowbit(i);
    }
}
/*
要求A[1,2,...,i]的和,对于一般数组要从1加到i,时间复杂度是O(n)而对于树状数组,只需要求
C[i, i-lowbit(i), i-lowbit(i-lowbit(i)),...,1]这条路径上点的和,时间复杂度是O(logn):   */
int sum(int i)
{
    int s = 0;
    while (i > 0)
    {
        s += C[i];
        i -= lowbit(i);
    }
    return s;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值