•题意:有m种DNA序列是有疾病的,问有多少种长度为n的DNA序列不包含任何一种有疾病的DNA序列。(仅含A,T,C,G四个字符)
•样例m=4,n=3,{“AA”,”AT”,”AC”,”AG”}
•答案为36,表示有36种长度为3的序列可以不包含疾病
这个和矩阵有什么关系呢???

•上图是例子{“ACG”,”C”},构建trie图后如图所示,从每个结点出发都有4条边(A,T,C,G)
•从状态0出发走一步有4种走法:
–走A到状态1(安全);
–走C到状态4(危险);
–走T到状态0(安全);
–走G到状态0(安全);
•所以当n=1时,答案就是3
•当n=2时,就是从状态0出发走2步,就形成一个长度为2的字符串,只要路径上没有经过危险结点,有几种走法,那么答案就是几种。依此类推走n步就形成长度为n的字符串。
•建立trie图的邻接矩阵M:
2 1 0 0 1
2 1 1 0 0
1 1 0 1 1
2 1 0 0 1
2 1 0 0 1
M[i,j]表示从结点i到j只走一步有几种走法。
那么M的n次幂就表示从结点i到j走n步有几种走法。
注意:危险结点要去掉,也就是去掉危险结点的行和列。结点3和4是单词结尾所以危险,结点2的fail指针指向4,当匹配”AC”时也就匹配了”C”,所以2也是危险的。
矩阵变成M:
2 1
2 1
计算M[][]的n次幂,然后 Σ(M[0,i]) mod 100000 就是答案。
由于n很大,可以使用二分来计算矩阵的幂
#include <cstdio>
#include <queue>
#include <algorithm>
#include <iostream>
#include <cstring>
using namespace std;
const int MAX_N = 10 * 10 + 5; //最大结点数:模式串个数 X 模式串最大长度
const int CLD_NUM = 4; //从每个结点出发的最多边数:本题是4个ATCG
typedef long long MATRIX[MAX_N][MAX_N];
MATRIX mat, mat1, mat2;
long long (*m1)[MAX_N], (*m2)[MAX_N];
class ACAutomaton
{
public:
int n; //当前结点总数
int id['Z'+1]; //字母x对应的结点编号为id[x]
int fail[MAX_N]; //fail指针
bool tag[MAX_N]; //本题所需
int trie[MAX_N][CLD_NUM]; //trie tree
void init()
{
id['A'] = 0;
id['T'] = 1;
id['C'] = 2;
id['G'] = 3;
}
void reset()
{
memset(trie[0], -1, sizeof(trie[0]));
tag[0] = false;
n = 1;
}
//插入模式串s,构造单词树(keyword tree)
void add(char *s)
{
int p = 0;
while (*s)
{
int i = id[*s];
if ( -1 == trie[p][i] )
{
memset(trie[n], -1, sizeof(trie[n]));
tag[n] = false;
trie[p][i] = n++;
}
p = trie[p][i];
s++;
}
tag[p] = true;
}
//用BFS来计算每个结点的fail指针,构造trie树
void construct()
{
queue<int> Q;
fail[0] = 0;
for (int i = 0; i < CLD_NUM; i++)
{
if (-1 != trie[0][i])
{
fail[trie[0][i]] = 0;
Q.push(trie[0][i]);
}
else
{
trie[0][i] = 0; //这个不能丢
}
}
while ( !Q.empty() )
{
int u = Q.front();
Q.pop();
if (tag[fail[u]])
tag[u] = true; //这个很重要,当u的后缀是病毒,u也不能出现
for (int i = 0; i < CLD_NUM; i++)
{
int &v = trie[u][i];
if ( -1 != v )
{
Q.push(v);
fail[v] = trie[fail[u]][i];
}
else
{
v = trie[fail[u]][i];
}
}
}
}
/* 根据trie树来构建状态转换的邻接矩阵mat[][]
mat[i][j]表示状态i到状态j有几条边 */
void buildMatrix()
{
memset(mat, 0, sizeof(mat));
for (int i = 0; i < n; i++)
for (int j = 0; j < CLD_NUM; j++)
if ( !tag[i] && !tag[trie[i][j]] ) //tag值为true的结点不能要,因为该结点的状态表示一个病毒
mat[i][trie[i][j]]++;
}
} AC;
void matrixMult(MATRIX t1, MATRIX t2, MATRIX res)
{
for (int i = 0; i < AC.n; i++)
for (int j = 0; j < AC.n; j++)
{
res[i][j] = 0;
for (int k = 0; k < AC.n; k++)
{
res[i][j] += t1[i][k] * t2[k][j];
}
res[i][j] %= 100000;
}
}
/*
递归二分计算矩阵的p次幂,结果存在m2[][]中
*/
void matrixPower(int p)
{
if (p == 1)
{
for (int i = 0; i < AC.n; i++)
for (int j = 0; j < AC.n; j++)
m2[i][j] = mat[i][j];
return;
}
matrixPower(p/2); //计算矩阵的p/2次幂,结果存在m2[][]
matrixMult(m2, m2, m1); //计算矩阵m2的平方,结果存在m1[][]
if (p % 2) //如果p为奇数,则再计算矩阵m1乘以原矩阵mat[][],结果存在m2[][]
matrixMult(m1, mat, m2);
else
swap(m1, m2);
}
int main()
{
int n, m;
char s[12];
AC.init();
cin >> m >> n;
AC.reset();
while ( m-- )
{
scanf("%s", s);
AC.add(s);
}
AC.construct();
AC.buildMatrix();
m1 = mat1;
m2 = mat2;
matrixPower(n);
int ans = 0;
for (int i = 0; i < AC.n; i++)
ans += m2[0][i];
printf("%d\n", ans % 100000);
return 0;
}