二分图的最大匹配、完美匹配和匈牙利算法

转载 2015年07月09日 16:56:54

二分图的最大匹配、完美匹配和匈牙利算法

这篇文章讲无权二分图(unweighted bipartite graph)的最大匹配(maximum matching)和完美匹配(perfect matching),以及用于求解匹配的匈牙利算法(Hungarian Algorithm);不讲带权二分图的最佳匹配。

二分图:简单来说,如果图中点可以被分为两组,并且使得所有边都跨越组的边界,则这就是一个二分图。准确地说:把一个图的顶点划分为两个不相交集 U  和 V ,使得每一条边都分别连接U 、 V  中的顶点。如果存在这样的划分,则此图为一个二分图。二分图的一个等价定义是:不含有「含奇数条边的环」的图。图 1 是一个二分图。为了清晰,我们以后都把它画成图 2 的形式。

匹配:在图论中,一个「匹配」(matching)是一个边的集合,其中任意两条边都没有公共顶点。例如,图 3、图 4 中红色的边就是图 2 的匹配。

Bipartite Graph(1)  Bipartite Graph(2)  Matching  Maximum Matching

我们定义匹配点匹配边未匹配点非匹配边,它们的含义非常显然。例如图 3 中 1、4、5、7 为匹配点,其他顶点为未匹配点;1-5、4-7为匹配边,其他边为非匹配边。

最大匹配:一个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最大匹配。图 4 是一个最大匹配,它包含 4 条匹配边。

完美匹配:如果一个图的某个匹配中,所有的顶点都是匹配点,那么它就是一个完美匹配。图 4 是一个完美匹配。显然,完美匹配一定是最大匹配(完美匹配的任何一个点都已经匹配,添加一条新的匹配边一定会与已有的匹配边冲突)。但并非每个图都存在完美匹配。

举例来说:如下图所示,如果在某一对男孩和女孩之间存在相连的边,就意味着他们彼此喜欢。是否可能让所有男孩和女孩两两配对,使得每对儿都互相喜欢呢?图论中,这就是完美匹配问题。如果换一个说法:最多有多少互相喜欢的男孩/女孩可以配对儿?这就是最大匹配问题。

0

基本概念讲完了。求解最大匹配问题的一个算法是匈牙利算法,下面讲的概念都为这个算法服务。

5交替路:从一个未匹配点出发,依次经过非匹配边、匹配边、非匹配边...形成的路径叫交替路。

增广路:从一个未匹配点出发,走交替路,如果途径另一个未匹配点(出发的点不算),则这条交替路称为增广路(agumenting path)。例如,图 5 中的一条增广路如图 6 所示(图中的匹配点均用红色标出):

6

增广路有一个重要特点:非匹配边比匹配边多一条。因此,研究增广路的意义是改进匹配。只要把增广路中的匹配边和非匹配边的身份交换即可。由于中间的匹配节点不存在其他相连的匹配边,所以这样做不会破坏匹配的性质。交换后,图中的匹配边数目比原来多了 1 条。

我们可以通过不停地找增广路来增加匹配中的匹配边和匹配点。找不到增广路时,达到最大匹配(这是增广路定理)。匈牙利算法正是这么做的。在给出匈牙利算法 DFS 和 BFS 版本的代码之前,先讲一下匈牙利树。

匈牙利树一般由 BFS 构造(类似于 BFS 树)。从一个未匹配点出发运行 BFS(唯一的限制是,必须走交替路),直到不能再扩展为止。例如,由图 7,可以得到如图 8 的一棵 BFS 树:

7   8    9

这棵树存在一个叶子节点为非匹配点(7 号),但是匈牙利树要求所有叶子节点均为匹配点,因此这不是一棵匈牙利树。如果原图中根本不含 7 号节点,那么从 2 号节点出发就会得到一棵匈牙利树。这种情况如图 9 所示(顺便说一句,图 8 中根节点 2 到非匹配叶子节点 7 显然是一条增广路,沿这条增广路扩充后将得到一个完美匹配)。

下面给出匈牙利算法的 DFS 和 BFS 版本的代码:

 

 

匈牙利算法的要点如下

  1. 从左边第 1 个顶点开始,挑选未匹配点进行搜索,寻找增广路。
    1. 如果经过一个未匹配点,说明寻找成功。更新路径信息,匹配边数 +1,停止搜索。
    2. 如果一直没有找到增广路,则不再从这个点开始搜索。事实上,此时搜索后会形成一棵匈牙利树。我们可以永久性地把它从图中删去,而不影响结果。
  2. 由于找到增广路之后需要沿着路径更新匹配,所以我们需要一个结构来记录路径上的点。DFS 版本通过函数调用隐式地使用一个栈,而 BFS 版本使用 prev 数组。

性能比较

两个版本的时间复杂度均为  O(VE) 。DFS 的优点是思路清晰、代码量少,但是性能不如 BFS。我测试了两种算法的性能。对于稀疏图,BFS 版本明显快于 DFS 版本;而对于稠密图两者则不相上下。在完全随机数据 9000 个顶点 4,0000 条边时前者领先后者大约 97.6%,9000 个顶点 100,0000 条边时前者领先后者 8.6%, 而达到 500,0000 条边时 BFS 仅领先 0.85%。

补充定义和定理:

最大匹配数:最大匹配的匹配边的数目
最小点覆盖数:选取最少的点,使任意一条边至少有一个端点被选择
最大独立数:选取最多的点,使任意所选两点均不相连
最小路径覆盖数:对于一个 DAG(有向无环图),选取最少条路径,使得每个顶点属于且仅属于一条路径。路径长可以为 0(即单个点)。

定理1:最大匹配数 = 最小点覆盖数(这是 Konig 定理)
定理2:最大匹配数 = 最大独立数
定理3:最小路径覆盖数 = 顶点数 - 最大匹配数

二分图的最大匹配、完美匹配和匈牙利算法

二分图的最大匹配、完美匹配和匈牙利算法 2013-08-01Algorithms二分图匹配, 图论, 算法 这篇文章讲无权二分图(unweighted bipartite graph)的最...
  • pi9nc
  • pi9nc
  • 2013年09月20日 15:38
  • 63642

#1122 : 二分图二•二分图最大匹配之匈牙利算法

时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上一回我们已经将所有有问题的相亲情况表剔除了,那么接下来要做的就是安排相亲了。因为过年时间...
  • wang2534499
  • wang2534499
  • 2015年07月25日 10:51
  • 487

二分图求最大匹配数,最完美匹配概念

二分图:把一个图的顶点划分为两个不相交集 UU 和VV ,使得每一条边都分别连接UU、VV中的顶点。如果存在这样的划分,则此图为一个二分图。 匹配:在图论中,一个「匹配」(matching)是一个边的...
  • winycg
  • winycg
  • 2016年03月21日 17:11
  • 657

二分图的基本概念+二分图的最大匹配问题(匈牙利算法)

今天学了二分图的最大匹配,其中的匈牙利算法。。哦不,其实远不止这个,还有后面的一系列KM、开花树啊什么的算法。反正又是一个异常懵逼的一天。。。 我觉得应该是上课前没有稍微预习一下这个算法是什么,了解个...
  • x_y_q_
  • x_y_q_
  • 2016年07月15日 20:05
  • 2811

二分匹配总结(匈牙利算法+最大权+最小权)

转自:http://dingdongsheng.cool.blog.163.com/blog/static/1186187552009431405995/ 前段时间为了省赛,我专门花了半个月...
  • michaelhan3
  • michaelhan3
  • 2016年06月22日 10:28
  • 1656

二分图的最大匹配、完美匹配和匈牙利DFS算法

以下内容基本转载自Renfei Song's Blog。 这篇文章讲无权二分图(unweighted bipartite graph)的最大匹配(maximum matching)和完美匹配(perf...
  • qq_35935435
  • qq_35935435
  • 2017年02月07日 08:07
  • 364

学习匈牙利算法总结(求解二分图最大匹配)

匈牙利算法就是求解二分图的最大匹配算法,
  • smileyk
  • smileyk
  • 2014年07月19日 11:43
  • 529

匈牙利算法求二分图的最大匹配

该文根据http://imlazy.ycool.com/post.1603708.htmlhttp://blog.edu.cn/user3/Hailer/archives/2007/1829623.s...
  • china8848
  • china8848
  • 2008年04月12日 22:25
  • 21503

二分图最大匹匈牙利算法图解

匈牙利算法是解决寻找二分图最大匹配的。 (一)预备知识     什么是二分图:二分图又称作二部图,是图论中的一种特殊模型。 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B...
  • A775700879
  • A775700879
  • 2013年10月23日 20:00
  • 900

求无权图的最大匹配---匈牙利算法

匈牙利算法 匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名,,它是部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图最大匹配的算法。 【先介绍几...
  • chaiwenjun000
  • chaiwenjun000
  • 2015年08月14日 16:40
  • 925
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:二分图的最大匹配、完美匹配和匈牙利算法
举报原因:
原因补充:

(最多只允许输入30个字)