frank 的专栏

人类的一切智慧是包含在这四个字里面的:”等待“ 和 ”希望“。—— 《基督山伯爵》...

【Tensorflow】 写给初学者的深度学习教程之 MNIST 数字识别

一般而言,MNIST 数据集测试就是机器学习和深度学习当中的"Hello World"工程,几乎是所有的教程都会把它放在最开始的地方.这是因为,这个简单的工程包含了大致的机器学习流程,通过练习这个工程有助于读者加深理解机器学习或者是深度学习的大致流程. 可恰恰就是在这个地方,却容易给初学者带来困...

2018-05-24 19:54:10

阅读数:3788

评论数:7

Java 泛型,你了解类型擦除吗?

泛型,一个孤独的守门者。 大家可能会有疑问,我为什么叫做泛型是一个守门者。这其实是我个人的看法而已,我的意思是说泛型没有其看起来那么深不可测,它并不神秘与神奇。泛型是 Java 中一个很小巧的概念,但同时也是一个很容易让人迷惑的知识点,它让人迷惑的地方在于它的许多表现有点违反直觉。文章开始的地方...

2017-08-05 22:32:18

阅读数:22214

评论数:37

轻松学,听说你还没有搞懂 Dagger2

Dagger2 确实比较难学,我想每个开发者学习的时候总是经历了一番痛苦的挣扎过程,于是就有了所谓的从入门到放弃之类的玩笑,当然不排除基础好的同学能够一眼看穿。本文的目的尝试用比较容易理解的角度去解释 Dagger2 这样东西。 Dagger2 是有门槛的,这样不同水平能力的开发者去学习这一...

2017-07-20 22:14:00

阅读数:19877

评论数:33

细说反射,Java 和 Android 开发者必须跨越的坎

写作是门手艺,笑对需要勇气。 写下这个题目的时候,我压力比较大,怕的是费力不讨好。因为反射这一块,对于大多数人员而言太熟悉了,稍微不注意就容易把方向写偏,把知识点写漏。但是,我已经写了注解和动态代理这两个知识点的博客,阅读量还可以,这两个知识点是属于反射机制中的,现在对于注解和动态代理息息相关的...

2017-07-06 23:36:13

阅读数:30378

评论数:47

轻松学,Java 中的代理模式及动态代理

前几天我写了《秒懂,Java 注解 (Annotation)你可以这样学》,因为注解其实算反射技术中的一部分,然后我想了一下,反射技术中还有个常见的概念就是动态代理,于是索性再写一篇关于动态代理的博文好了。 我们先来分析代理这个词。 代理 代理是英文 Proxy 翻译过来的。我们在生...

2017-06-29 22:08:55

阅读数:35135

评论数:44

秒懂,Java 注解 (Annotation)你可以这样学

文章开头先引入一处图片。 这处图片引自老罗的博客。为了避免不必要的麻烦,首先声明我个人比较尊敬老罗的。至于为什么放这张图,自然是为本篇博文服务,接下来我自会说明。好了,可以开始今天的博文了。 Annotation 中文译过来就是注解、标释的意思,在 Java 中注解是一个很重要的知识点...

2017-06-27 21:48:30

阅读数:140865

评论数:254

针对 CoordinatorLayout 及 Behavior 的一次细节较真

我认真不是为了输赢,我就是认真。– 罗永浩 我一直对 Material Design 很感兴趣,每次在官网上阅读它的相关文档时,我总会有更进一步的体会。当然,Material Design 并不是仅仅针对 Android 而言的,它其实是一套普遍性的设计规范。而对于 Android 开发...

2017-06-12 22:17:29

阅读数:20046

评论数:20

RecyclerView探索之通过ItemDecoration实现StickyHeader效果

我在上一篇《小甜点,RecyclerView 之 ItemDecoration 讲解及高级特性实践 》 讲解了 ItemDecoration 的基本用法及它的一些实践,抱着学习研究的态度,这一篇作为实践篇主要目的是尝试通过 ItemDecoration 来实现 RecyclerView 中的 St...

2017-04-17 15:58:42

阅读数:11451

评论数:14

一看你就懂,超详细java中的ClassLoader详解

本篇文章已授权微信公众号 guolin_blog (郭霖)独家发布 ClassLoader翻译过来就是类加载器,普通的java开发者其实用到的不多,但对于某些框架开发者来说却非常常见。理解ClassLoader的加载机制,也有利于我们编写出更高效的代码。ClassLoader的具体作用就是将cl...

2017-02-10 19:26:54

阅读数:138814

评论数:168

Python 多线程编程(二):threading 模块中 Lock 类的用法详解

在前面一篇博文《Python多线程编程(一):threading 模块 Thread 类的用法详解 》 我有简单介绍怎么利用 threading 模块进行多线程的编码。 但那只是多线程编码最简单的部分,真正难的其实是多个线程之间的通信和数据同步。 大概可以这样讲,多线程最难的是如何正确协调各个...

2018-12-23 10:21:55

阅读数:78

评论数:2

Python多线程编程(一):threading 模块 Thread 类的用法详解

我们进行程序开发的时候,肯定避免不了要处理并发的情况。 一般并发的手段有采用多进程和多线程。 但线程比进程更轻量化,系统开销一般也更低,所以大家更倾向于用多线程的方式处理并发的情况。 Python 提供多线程编程的方式。 本文基于 Python3 讲解,Python 实现多线程编程需要借助...

2018-12-19 16:54:45

阅读数:79

评论数:0

【深度学习】轻量级神经网络 SqueezeNet 讲解

在深度学习领域,人们一般把注意力集中在如何提高神经网络的准确度上,所以,神经网络的层次越来越深,参数也越来越多,但带来的问题就是神经网络对于硬件的要求越来越高,但在嵌入式硬件上比如手机、自动驾驶的计算平台,这将很吃力,所以,有一些人会将精力放在如何精简和优化网络模型上,以便它们能够比较顺利运行在硬...

2018-12-13 21:44:04

阅读数:178

评论数:1

如何通过 Matplotlib 绘制动画及保存 GIF 图片?

在自学机器学习或者是深度学习的过程中,有的时候总想把执行过程或者执行结果显示出来,所以就想到了动画。好在用 Python 实现动画有许多中方式,而大家熟知的 Matplotlib 库就可以实现。 本文的目的是对 Matplotlib 的动画实现手段做一个简单的说明。 绘制动画 import ...

2018-12-10 15:41:32

阅读数:372

评论数:0

【深度学习】目标检测算法 YOLO 最耐心细致的讲解

YOLO 是 2016 年提出来的目标检测算法,在当时比较优秀的目标检测算法有 R-CNN、Fast R-CNN 等等,但 YOLO 算法还是让人感到很新奇与兴奋。 YOLO 是 You only look once 几个单词的缩写,大意是你看一次就可以预测了,灵感就来自于我们人类自己,因为人看一...

2018-12-04 20:43:50

阅读数:249

评论数:0

用 PyTorch 从零创建 CIFAR-10 的图像分类器神经网络,并将测试准确率达到 85%

一般,深度学习的教材或者是视频,作者都会通过 MNIST 这个数据集,讲解深度学习的效果,但这个数据集太小了,而且是单色图片,随便弄些模型就可以取得比较好的结果,但如果我们不满足于此,想要训练一个神经网络来对彩色图像进行分类,可以不可以呢? 当然可以的,但是没有想象的容易。 我最开始亲自设置神...

2018-11-21 16:47:38

阅读数:290

评论数:0

【深度学习】Batch Normalizaton 的作用及理论基础详解

对于 Batch Normalization 的知识最原始的出处来源于《Batch Normalization:Accelerating Deep Network Trainning by Reducing Internal Covariate Shift》这篇论文。 文章开始前,先讲一下 Bat...

2018-11-18 16:11:48

阅读数:115

评论数:0

【深度学习】经典神经网络 VGG 论文解读

VGG 在深度学习领域中非常有名,很多人 fine-tune 的时候都是下载 VGG 的预训练过的权重模型,然后在次基础上进行迁移学习。VGG 是 ImageNet 2014 年目标定位竞赛的第一名,图像分类竞赛的第二名,需要注意的是,图像分类竞赛的第一名是大名鼎鼎的 GoogLeNet,那么为什...

2018-11-06 18:56:08

阅读数:204

评论数:0

【深度学习】经典神经网络 ResNet 论文解读

ResNet 是何凯明团队的作品,对应的论文 《Deep Residual Learning for Image Recognition》是 2016 CVPR 最佳论文。ResNet 的 Res 也是 Residual 的缩写,它的用意在于基于残差学习,让神经网络能够越来越深,准确率越来越高。 ...

2018-10-30 18:55:43

阅读数:177

评论数:0

【Tensorflow】数据及模型的保存和恢复

如果你是一个深度学习的初学者,那么我相信你应该会跟着教材或者视频敲上那么一遍代码,搭建最简单的神经网络去完成针对 MNIST 数据库的数字识别任务。通常,随意构建 3 层神经网络就可以很快地完成任务,得到比较高的准确率。这时候,你信心大增,准备挑战更难的任务。 你准备进行针对彩色图片做类型识别,那...

2018-10-23 22:56:41

阅读数:403

评论数:2

【深度学习】CNN 中 1x1 卷积核的作用

最近研究 GoogLeNet 和 VGG 神经网络结构的时候,都看见了它们在某些层有采取 1x1 作为卷积核,起初的时候,对这个做法很是迷惑,这是因为之前接触过的教材的例子中最小的卷积核是 3x3 ,那么,1x1 的卷积核有什么意义呢? 最初应用 1x1 卷积核的神经网络是 Network In...

2018-10-19 18:12:18

阅读数:158

评论数:0

提示
确定要删除当前文章?
取消 删除