[LCA] tarjan算法 模版

LCA算法:

LCA(Least Common Ancestor),顾名思义,是指在一棵树中,距离两个点最近的两者的公共节点。也就是说,在两个点通往根的道路上,肯定会有公共的节点,我们就是要求找到公共的节点中,深度尽量深的点。还可以表示成另一种说法,就是如果把树看成是一个图,这找到这两个点中的最短距离。

tarjan算法是离线算法,复杂度为O(n+Q),使用了并查集+dfs的操作。中间的那个并查集操作的作用,只是将已经查找过的节点捆成一个集合然后再指向一个公共的祖先。另外,如果要查询LCA(a,b),必须把(a,b)和(b,a)都加入邻接表。

如poj1330为例

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>

using namespace std;

#define MAXN 10001

int n,fa[MAXN];
int rank[MAXN];
int indegree[MAXN];
int vis[MAXN];
vector<int> hash[MAXN],Qes[MAXN];
int ances[MAXN];//祖先


void init(int n)
{
    for(int i=0;i<=n;i++)
    {
        fa[i]=i;
        rank[i]=0;
        indegree[i]=0;
        vis[i]=0;
        ances[i]=0;
        hash[i].clear();
        Qes[i].clear();
    }
}

int find(int x)
{
    if(x != fa[x])
        fa[x]=find(fa[x]);
    return fa[x];
}

void unio(int x,int y)
{
    int fx=find(x),fy=find(y);
    if(fx==fy) return ;
    if(rank[fy]<rank[fx])
        fa[fy]=fx;
    else
    {
        fa[fx]=fy;
        if(rank[fx]==rank[fy])
            rank[fy]++;
    }
}

void Tarjan(int u)
{
    ances[u]=u;
    int i,size = hash[u].size();
    for(i=0;i<size;i++)
    {
        Tarjan(hash[u][i]);//递归处理儿子
        unio(u,hash[u][i]);//将儿子父亲合并,合并时会将儿子的父亲改为u
        ances[find(u)]=u;//此时find(u)仍为u,即
    }
    vis[u]=1;
    
    //查询
    size = Qes[u].size();
    for(i=0;i<size;i++)
    {
        if(vis[Qes[u][i]]==1)//即查询的另一个结点开始已经访问过,当前的u在此回合访问。
        {
            printf("%d\n",ances[find(Qes[u][i])]);//由于递归,此时还是在u
            return;
        }
    }
}

int main()
{
    int t;
    int i,j;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        init(n);
        int s,d;
        for(i=1;i<=n-1;i++)
        {
            scanf("%d%d",&s,&d);
            hash[s].push_back(d);
            indegree[d]++;
        }
        scanf("%d%d",&s,&d);
    //    if(s==d)//如果需要计数的时候注意
//            ans[d]++;
//        else
//        {
            Qes[s].push_back(d);
            Qes[d].push_back(s);
//        }
        for(j=1;j<=n;j++)
        {
            if(indegree[j]==0)
            {
                Tarjan(j);
                break;
            }
        }
    }
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值